材料科学
催化作用
合金
电催化剂
纳米颗粒
吸附
高熵合金
氢
电化学
化学工程
化学物理
纳米技术
物理化学
电极
冶金
化学
工程类
生物化学
有机化学
作者
Heng Luo,Lu Li,Fangxu Lin,Qinghua Zhang,Kai Wang,Dawei Wang,Lin Gu,Mingchuan Luo,Fan Lv,Shaojun Guo
标识
DOI:10.1002/adma.202403674
摘要
Abstract High‐entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub‐2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion‐rich HEA catalysts with optimized electronic structure can downshift the d‐band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg −1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non‐Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H 2 s −1 at 70 mV versus RHE, 4.6‐fold higher than that of Pt/C catalyst, exceeding most noble metal‐based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (H ad ) and enhanced hydroxyl (OH ad ) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.
科研通智能强力驱动
Strongly Powered by AbleSci AI