压电1
机械生物学
细胞骨架
膜
缩进
机械转化
细胞
生物物理学
张力(地质)
化学
细胞生物学
荧光显微镜
细胞膜
纳米技术
生物
材料科学
荧光
离子通道
物理
生物化学
机械敏感通道
量子力学
冶金
受体
复合材料
极限抗拉强度
作者
Ines Lüchtefeld,Igor V. Pivkin,Lucia Gardini,Elaheh Zare‐Eelanjegh,Christoph G. Gäbelein,Stephan J. Ihle,Andreas M. Reichmuth,Marco Capitanio,Boris Martinac,Tomaso Zambelli,Massimo Vassalli
出处
期刊:Nature Methods
[Springer Nature]
日期:2024-05-27
卷期号:21 (6): 1063-1073
被引量:6
标识
DOI:10.1038/s41592-024-02277-8
摘要
Abstract The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.
科研通智能强力驱动
Strongly Powered by AbleSci AI