Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:5
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听煎饼完成签到 ,获得积分10
刚刚
明理冬瓜完成签到,获得积分10
刚刚
bkagyin应助cldg采纳,获得10
刚刚
小马甲应助不站在雾里采纳,获得10
刚刚
pp完成签到 ,获得积分0
1秒前
zhangjianzeng完成签到 ,获得积分10
1秒前
史小菜应助云轩采纳,获得20
2秒前
伏伏雅逸发布了新的文献求助10
2秒前
李健应助荒野风采纳,获得10
3秒前
Popeye应助单纯血茗采纳,获得10
3秒前
淡然冬灵发布了新的文献求助10
3秒前
Popeye应助单纯血茗采纳,获得10
3秒前
荔枝的油饼iKun完成签到,获得积分10
4秒前
Bosen完成签到,获得积分10
4秒前
Astraeus完成签到 ,获得积分10
5秒前
fengyuenanche完成签到,获得积分10
6秒前
五虎完成签到,获得积分10
7秒前
Akim应助Rollei采纳,获得10
8秒前
hoshi1018完成签到,获得积分10
9秒前
友好曲奇完成签到,获得积分10
9秒前
dongdong完成签到 ,获得积分10
10秒前
CR7完成签到,获得积分0
11秒前
左丘忻完成签到,获得积分10
11秒前
凤迎雪飘完成签到,获得积分10
11秒前
11秒前
FashionBoy应助云轩采纳,获得10
12秒前
领导范儿应助伏伏雅逸采纳,获得10
12秒前
13秒前
Rondab应助悦耳荟采纳,获得10
13秒前
liqian完成签到,获得积分10
13秒前
易安发布了新的文献求助100
14秒前
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
cdh1994应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
沉默的谷秋完成签到,获得积分10
15秒前
大个应助科研通管家采纳,获得10
15秒前
过时的热狗完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048