Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:5
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助单薄靖儿采纳,获得10
1秒前
张昭蓉完成签到 ,获得积分10
1秒前
乐乐应助甜甜的亦寒采纳,获得10
2秒前
Lala发布了新的文献求助10
3秒前
Tohka完成签到 ,获得积分10
3秒前
要开心完成签到,获得积分10
4秒前
花痴的慕蕊完成签到,获得积分10
6秒前
哎呀哎呀25完成签到,获得积分10
6秒前
飘逸灰狼发布了新的文献求助10
6秒前
mmmmm完成签到,获得积分10
7秒前
8秒前
LZL完成签到 ,获得积分10
9秒前
小伙不错完成签到 ,获得积分10
9秒前
小沈完成签到,获得积分10
9秒前
Meyako完成签到 ,获得积分10
9秒前
顾矜应助wxr采纳,获得10
12秒前
13秒前
於妙海发布了新的文献求助10
14秒前
陈老太完成签到 ,获得积分10
14秒前
15秒前
憨憨医生发布了新的文献求助10
17秒前
17秒前
淡定的安白完成签到,获得积分10
19秒前
1259杨发布了新的文献求助30
19秒前
飘逸灰狼完成签到,获得积分10
20秒前
舒心书南发布了新的文献求助30
20秒前
爆米花应助kebing采纳,获得10
20秒前
一亩蔬菜完成签到,获得积分10
20秒前
21秒前
BruceQ完成签到,获得积分10
22秒前
英姑应助小杨采纳,获得10
22秒前
达达利亚完成签到,获得积分10
23秒前
27秒前
雨中客完成签到,获得积分10
27秒前
思维隋发布了新的文献求助30
27秒前
虚心的惮完成签到 ,获得积分10
27秒前
29秒前
於妙海完成签到,获得积分10
29秒前
yydragen应助怕孤单的Hannah采纳,获得30
29秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991212
求助须知:如何正确求助?哪些是违规求助? 3532412
关于积分的说明 11257594
捐赠科研通 3271462
什么是DOI,文献DOI怎么找? 1805436
邀请新用户注册赠送积分活动 882386
科研通“疑难数据库(出版商)”最低求助积分说明 809292