Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:9
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小斤欠发布了新的文献求助10
刚刚
小汪汪完成签到,获得积分10
1秒前
MM发布了新的文献求助10
1秒前
堪妙松完成签到,获得积分20
1秒前
yao完成签到 ,获得积分10
1秒前
天天快乐应助荷小哈采纳,获得10
2秒前
倩倩发布了新的文献求助10
2秒前
hylqj123完成签到,获得积分10
2秒前
雪茶完成签到,获得积分10
2秒前
2秒前
junze发布了新的文献求助10
2秒前
3秒前
3秒前
充电宝应助可耐的不平采纳,获得10
3秒前
桐桐应助可耐的不平采纳,获得10
3秒前
3秒前
田様应助可耐的不平采纳,获得10
4秒前
Akim应助可耐的不平采纳,获得10
4秒前
JamesPei应助luchong采纳,获得30
4秒前
大个应助可耐的不平采纳,获得10
4秒前
4秒前
Jasper应助可耐的不平采纳,获得10
4秒前
英俊的铭应助可耐的不平采纳,获得10
4秒前
研友_VZG7GZ应助可耐的不平采纳,获得10
4秒前
星辰大海应助可耐的不平采纳,获得10
5秒前
丘比特应助可耐的不平采纳,获得10
5秒前
5秒前
5秒前
coco发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
研友_VZG7GZ应助M27采纳,获得10
7秒前
luchong完成签到,获得积分10
7秒前
hylqj123发布了新的文献求助20
7秒前
cc完成签到 ,获得积分10
8秒前
zjl关闭了zjl文献求助
8秒前
8秒前
123发布了新的文献求助10
8秒前
francesliu完成签到,获得积分10
9秒前
yyhgyg完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978