Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:5
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangzhen发布了新的文献求助10
刚刚
马桶盖盖子完成签到 ,获得积分10
刚刚
1秒前
学术小白完成签到,获得积分10
1秒前
1秒前
郭豪琪发布了新的文献求助10
2秒前
认真丹亦完成签到 ,获得积分10
3秒前
周冬华完成签到,获得积分10
3秒前
烟花应助阔达的平卉采纳,获得10
3秒前
敦敦完成签到,获得积分20
3秒前
nenoaowu完成签到,获得积分10
3秒前
迟大猫应助Hangerli采纳,获得20
4秒前
自信安荷完成签到,获得积分10
4秒前
5秒前
5秒前
赵OO发布了新的文献求助10
5秒前
daniel发布了新的文献求助10
6秒前
敦敦发布了新的文献求助10
6秒前
Apocalypse_zjz完成签到,获得积分10
7秒前
福尔摩曦发布了新的文献求助30
8秒前
开心发布了新的文献求助10
8秒前
zzzzz完成签到,获得积分10
8秒前
8秒前
赵银志完成签到 ,获得积分10
9秒前
9秒前
郭豪琪完成签到,获得积分10
10秒前
10秒前
麦兜完成签到 ,获得积分10
10秒前
慕青应助wjx采纳,获得10
12秒前
打打应助wjx采纳,获得30
12秒前
JamesPei应助wjx采纳,获得10
12秒前
可爱的函函应助wjx采纳,获得10
12秒前
深情安青应助wjx采纳,获得10
12秒前
在水一方应助wjx采纳,获得10
13秒前
科研通AI2S应助wjx采纳,获得10
13秒前
氮三氟甲基应助wjx采纳,获得10
13秒前
FashionBoy应助wjx采纳,获得30
13秒前
天天快乐应助wjx采纳,获得10
13秒前
ding应助一一采纳,获得10
14秒前
weishen完成签到,获得积分0
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824