Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:9
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到 ,获得积分10
刚刚
kylin完成签到,获得积分10
1秒前
gy042876发布了新的文献求助30
2秒前
和谐青柏应助YWK采纳,获得10
2秒前
2秒前
王加冕完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
安静的依琴完成签到,获得积分10
4秒前
爆米花应助fff采纳,获得10
5秒前
5秒前
万能图书馆应助nanmu采纳,获得50
6秒前
xiaolv完成签到,获得积分10
7秒前
MMWang发布了新的文献求助10
7秒前
7秒前
韩豆乐发布了新的文献求助10
10秒前
qqq发布了新的文献求助10
10秒前
10秒前
李书溪完成签到,获得积分10
11秒前
聪明元蝶发布了新的文献求助10
11秒前
11秒前
小马甲应助洁洁洁采纳,获得10
12秒前
虚幻又菡完成签到,获得积分10
12秒前
cyt9999发布了新的文献求助10
12秒前
Agu发布了新的文献求助10
12秒前
和谐青柏应助recognize采纳,获得10
13秒前
13秒前
dssdgbd完成签到,获得积分10
13秒前
buno应助Dml采纳,获得10
13秒前
14秒前
活泼的大船完成签到,获得积分10
14秒前
14秒前
L同学发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
xiaolv关注了科研通微信公众号
17秒前
天下迎春发布了新的文献求助10
17秒前
Agu完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602687
求助须知:如何正确求助?哪些是违规求助? 4687724
关于积分的说明 14850920
捐赠科研通 4684930
什么是DOI,文献DOI怎么找? 2540020
邀请新用户注册赠送积分活动 1506783
关于科研通互助平台的介绍 1471445