亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:5
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不秃燃的小老弟完成签到 ,获得积分10
21秒前
41秒前
Owen应助科研通管家采纳,获得10
57秒前
年年有余完成签到,获得积分10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
3分钟前
juan完成签到 ,获得积分10
4分钟前
学术小垃圾完成签到,获得积分10
4分钟前
叁月二完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
xingsixs完成签到 ,获得积分10
5分钟前
AprilLeung完成签到 ,获得积分10
6分钟前
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
迷茫的一代完成签到,获得积分10
7分钟前
魔笛的云宝完成签到 ,获得积分10
7分钟前
www完成签到,获得积分10
8分钟前
8分钟前
NexusExplorer应助科研通管家采纳,获得10
8分钟前
Akitten发布了新的文献求助10
9分钟前
啥时候吃火锅完成签到 ,获得积分0
10分钟前
上官若男应助科研通管家采纳,获得30
10分钟前
斯文败类应助科研通管家采纳,获得10
10分钟前
李爱国应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
赘婿应助科研通管家采纳,获得10
10分钟前
田様应助精明晓刚采纳,获得10
11分钟前
11分钟前
精明晓刚发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
coolplex完成签到 ,获得积分10
13分钟前
wwe完成签到,获得积分10
13分钟前
貔貅完成签到 ,获得积分10
14分钟前
yindi1991完成签到 ,获得积分10
16分钟前
hgl完成签到,获得积分10
16分钟前
16分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990423
求助须知:如何正确求助?哪些是违规求助? 3532158
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234