Engineering Machine Learning Features to Predict Adsorption of Carbon Dioxide and Nitrogen in Metal–Organic Frameworks

金属有机骨架 二氧化碳 吸附 氮气 材料科学 化学工程 无机化学 环境科学 化学 工程类 有机化学
作者
Zijun Deng,Lev Sarkisov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:128 (24): 10202-10215 被引量:5
标识
DOI:10.1021/acs.jpcc.4c01692
摘要

In this article, we propose simple, interpretable machine learning (ML) features aimed at improving the accuracy of ML models in predicting adsorption of gases, such as methane, ethane, propane, krypton, and xenon, in metal–organic frameworks (MOFs). In particular, we introduce energy-based features that incorporate surface energy histograms and radial distribution functions. These features effectively capture spatial variations in interaction energy, thereby improving the predictive capabilities of the ML models. We further extend this approach to predict the adsorption of carbon dioxide and nitrogen in a diverse set of MOFs under ambient conditions by including the Coulombic energy component in the proposed energy-based features. The final ML model combines the energy-based features with geometric characteristics of MOFs and Henry's law constants. This integration results in significantly increased predictive accuracy of the models, especially within the moderate pressure regime, when compared to that of previous studies. Using the CoRE MOF database for training and testing, our ML model achieves a prediction accuracy of R2 > 0.96 for methane, ethane, krypton, and xenon at various conditions, R2 > 0.96 for propane, R2 > 0.80 for carbon dioxide, and R2 > 0.97 for nitrogen. Using the CRAFTED database of simulated adsorption isotherms for carbon dioxide and nitrogen, we demonstrate the robustness of the ML model in predicting single-component isotherms at a specific temperature. In this test, the model achieves R2 > 0.87 for carbon dioxide and R2 > 0.90 for nitrogen. The physics-based nature of the proposed features allows us to provide some interpretation of why the predictions of the ML model are better for some materials than for others. According to this interpretation, an accurate representation of the shape of the potential energy surface plays an important role in capturing the process of adsorption. Finally, we acknowledge certain limitations of the current model such as the oversimplification in representing the geometry and interactions of molecules with polar interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘雪月发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
佳琳有乐完成签到,获得积分10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
CHAosLoopy应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
今后应助cccyq采纳,获得10
4秒前
烟花应助科研通管家采纳,获得30
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得30
4秒前
4秒前
CHAosLoopy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
swapping完成签到 ,获得积分10
11秒前
彭栋发布了新的文献求助10
13秒前
所所应助萨日呼采纳,获得10
14秒前
16秒前
隐形曼青应助hh采纳,获得50
18秒前
义气如萱发布了新的文献求助10
19秒前
小俊完成签到,获得积分10
21秒前
Nana发布了新的文献求助20
22秒前
小二郎应助修管子采纳,获得10
23秒前
mie完成签到,获得积分10
26秒前
26秒前
27秒前
寄语明月发布了新的文献求助10
29秒前
hh发布了新的文献求助50
31秒前
mie发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105