Complete Region of Interest for Unconstrained Palmprint Recognition

人工智能 计算机科学 判别式 模式识别(心理学) 计算机视觉 特征提取 卷积(计算机科学) 感兴趣区域 卷积神经网络 特征(语言学) 像素 不变(物理) 人工神经网络 数学 语言学 哲学 数学物理
作者
Le Su,Lunke Fei,Bob Zhang,Shuping Zhao,Jie Wen,Yong Xu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3662-3675 被引量:3
标识
DOI:10.1109/tip.2024.3407666
摘要

Unconstrained palmprint images have shown great potential for recognition applications due to their lower restrictions regarding hand poses and backgrounds during contactless image acquisition. However, they face two challenges: 1) unclear palm contours and finger-valley points of unconstrained palmprint images make it difficult to locate landmarks to crop the palmprint region of interest (ROI); and 2) large intra-class diversities of unconstrained palmprint images hinder the learning of intra-class-invariant palmprint features. In this paper, we propose to directly extract the complete palmprint region as the ROI (CROI) using the detection-style CenterNet without requiring the detection of any landmarks, and large intra-class diversities may occur. To address this, we further propose a palmprint feature alignment and learning hybrid network (PalmALNet) for unconstrained palmprint recognition. Specifically, we first exploit and align the multi-scale shallow representation of unconstrained palmprint images via deformable convolution and alignment-aware supervision, such that the pixel gaps of the intra-class palmprint CROIs can be minimized in shallow feature space. Then, we develop multiple triple-attention learning modules by integrating spatial, channel, and self-attention operations into convolution to adaptively learn and highlight the latent identity-invariant palmprint information, enhancing the overall discriminative power of the palmprint features. Extensive experimental results on four challenging palmprint databases demonstrate the promising effectiveness of both the proposed PalmALNet and CROI for unconstrained palmprint recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gengsumin完成签到,获得积分10
1秒前
代舒宇关注了科研通微信公众号
1秒前
从别后忆相逢完成签到 ,获得积分10
2秒前
蔚蓝绽放完成签到,获得积分10
2秒前
ff发布了新的文献求助10
2秒前
雾影觅光完成签到,获得积分10
3秒前
山真页完成签到,获得积分10
3秒前
3秒前
ding应助xiaohu6311采纳,获得30
4秒前
Hello应助Kirin采纳,获得10
5秒前
6秒前
7秒前
周周发布了新的文献求助10
7秒前
8秒前
大个应助鱼人采纳,获得10
9秒前
烟花应助不万能青年采纳,获得10
10秒前
柴柴完成签到,获得积分10
11秒前
jiang完成签到 ,获得积分10
11秒前
科研通AI2S应助qianlu采纳,获得10
12秒前
鱼生发布了新的文献求助10
12秒前
老木虫发布了新的文献求助10
12秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
13秒前
13秒前
13秒前
鄢廷芮完成签到 ,获得积分10
13秒前
碧蓝的汽车完成签到,获得积分10
14秒前
锅包肉完成签到 ,获得积分10
15秒前
16秒前
17秒前
陶醉书包完成签到 ,获得积分10
19秒前
QSNI发布了新的文献求助10
20秒前
顾子墨完成签到,获得积分10
21秒前
李柯莹完成签到,获得积分10
22秒前
vidi发布了新的文献求助10
23秒前
shishi完成签到,获得积分10
23秒前
YY88687321完成签到 ,获得积分10
23秒前
香蕉觅云应助老木虫采纳,获得10
25秒前
宋泽艺完成签到 ,获得积分10
28秒前
ding应助vidi采纳,获得10
30秒前
晨熙关注了科研通微信公众号
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286