Complete Region of Interest for Unconstrained Palmprint Recognition

人工智能 计算机科学 判别式 模式识别(心理学) 计算机视觉 特征提取 卷积(计算机科学) 感兴趣区域 卷积神经网络 特征(语言学) 像素 不变(物理) 人工神经网络 数学 哲学 语言学 数学物理
作者
Le Su,Lunke Fei,Bob Zhang,Shuping Zhao,Jie Wen,Yong Xu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3662-3675 被引量:3
标识
DOI:10.1109/tip.2024.3407666
摘要

Unconstrained palmprint images have shown great potential for recognition applications due to their lower restrictions regarding hand poses and backgrounds during contactless image acquisition. However, they face two challenges: 1) unclear palm contours and finger-valley points of unconstrained palmprint images make it difficult to locate landmarks to crop the palmprint region of interest (ROI); and 2) large intra-class diversities of unconstrained palmprint images hinder the learning of intra-class-invariant palmprint features. In this paper, we propose to directly extract the complete palmprint region as the ROI (CROI) using the detection-style CenterNet without requiring the detection of any landmarks, and large intra-class diversities may occur. To address this, we further propose a palmprint feature alignment and learning hybrid network (PalmALNet) for unconstrained palmprint recognition. Specifically, we first exploit and align the multi-scale shallow representation of unconstrained palmprint images via deformable convolution and alignment-aware supervision, such that the pixel gaps of the intra-class palmprint CROIs can be minimized in shallow feature space. Then, we develop multiple triple-attention learning modules by integrating spatial, channel, and self-attention operations into convolution to adaptively learn and highlight the latent identity-invariant palmprint information, enhancing the overall discriminative power of the palmprint features. Extensive experimental results on four challenging palmprint databases demonstrate the promising effectiveness of both the proposed PalmALNet and CROI for unconstrained palmprint recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司纤户羽发布了新的文献求助10
刚刚
1秒前
小怪发布了新的文献求助30
1秒前
2秒前
万严完成签到,获得积分10
2秒前
4秒前
成就书南发布了新的文献求助10
5秒前
九九九发布了新的文献求助10
6秒前
充电宝应助无情的宛儿采纳,获得10
6秒前
jesko发布了新的文献求助10
7秒前
7秒前
wz0330发布了新的文献求助10
8秒前
9秒前
刘泉龙发布了新的文献求助10
11秒前
12秒前
今后应助九九九采纳,获得10
12秒前
典雅绮兰发布了新的文献求助10
13秒前
13秒前
123发布了新的文献求助10
13秒前
子车茗应助Bressanone采纳,获得30
15秒前
16秒前
18秒前
z549326399完成签到,获得积分10
18秒前
野玫兰完成签到,获得积分10
19秒前
科研通AI6应助小谭采纳,获得10
20秒前
敏er好学发布了新的文献求助10
20秒前
开心采白发布了新的文献求助10
20秒前
21秒前
21秒前
FashionBoy应助扶子茶采纳,获得10
21秒前
芮6769发布了新的文献求助10
21秒前
阿达发布了新的文献求助10
21秒前
淋漓尽致发布了新的文献求助10
22秒前
yzh完成签到,获得积分10
23秒前
研友_Z6kxK8完成签到,获得积分10
23秒前
方东完成签到,获得积分10
23秒前
LYQ680906发布了新的文献求助10
24秒前
深情安青应助诸葛藏藏采纳,获得10
24秒前
下水道管家完成签到,获得积分10
24秒前
xielunwen发布了新的文献求助10
24秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242658
求助须知:如何正确求助?哪些是违规求助? 4409214
关于积分的说明 13724468
捐赠科研通 4278502
什么是DOI,文献DOI怎么找? 2347698
邀请新用户注册赠送积分活动 1344877
关于科研通互助平台的介绍 1302934