TransfIGN: A Structure-Based Deep Learning Method for Modeling the Interaction between HLA-A*02:01 and Antigen Peptides

可解释性 计算生物学 人类白细胞抗原 水准点(测量) 主要组织相容性复合体 计算机科学 人工智能 机器学习 生物 抗原 免疫学 大地测量学 地理
作者
Nanqi Hong,Dejun Jiang,Zhe Wang,Huiyong Sun,Hao Luo,Lingjie Bao,Mingli Song,Yu Kang,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (13): 5016-5027 被引量:1
标识
DOI:10.1021/acs.jcim.4c00678
摘要

The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QING发布了新的文献求助10
1秒前
烂漫炎彬发布了新的文献求助10
1秒前
yzhwzh给yzhwzh的求助进行了留言
1秒前
相对发布了新的文献求助50
4秒前
Ma完成签到,获得积分10
5秒前
8秒前
quhayley应助Flanker采纳,获得20
9秒前
危机的安容完成签到,获得积分10
10秒前
小吕发布了新的文献求助10
11秒前
drift发布了新的文献求助10
11秒前
12秒前
棋士发布了新的文献求助10
12秒前
科研通AI2S应助田轲采纳,获得10
13秒前
th完成签到,获得积分10
13秒前
xxxx完成签到,获得积分10
14秒前
14秒前
起飞上天发布了新的文献求助10
16秒前
17秒前
19秒前
Flanker完成签到,获得积分10
22秒前
伶俐问薇完成签到,获得积分10
22秒前
kento发布了新的文献求助10
22秒前
22秒前
zyf发布了新的文献求助10
23秒前
丹丹丹发布了新的文献求助10
24秒前
25秒前
Kail完成签到,获得积分10
29秒前
李萌萌发布了新的文献求助20
29秒前
chen应助木头人采纳,获得10
30秒前
30秒前
32秒前
小怡子发布了新的文献求助10
33秒前
彭珊发布了新的文献求助30
33秒前
粉色完成签到,获得积分10
34秒前
orixero应助冬瓜熊采纳,获得10
35秒前
王志威发布了新的文献求助10
35秒前
小马甲应助科研通管家采纳,获得10
39秒前
Orange应助科研通管家采纳,获得10
39秒前
daifei完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030