TransfIGN: A Structure-Based Deep Learning Method for Modeling the Interaction between HLA-A*02:01 and Antigen Peptides

可解释性 计算生物学 人类白细胞抗原 水准点(测量) 主要组织相容性复合体 计算机科学 人工智能 机器学习 生物 抗原 免疫学 大地测量学 地理
作者
Nanqi Hong,Dejun Jiang,Zhe Wang,Huiyong Sun,Hao Luo,Lingjie Bao,Mingli Song,Yu Kang,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (13): 5016-5027 被引量:1
标识
DOI:10.1021/acs.jcim.4c00678
摘要

The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shatang完成签到,获得积分10
刚刚
1秒前
Owen应助一天八杯水采纳,获得10
1秒前
所所应助静静子采纳,获得10
2秒前
所所应助jy采纳,获得10
2秒前
hkxfg完成签到,获得积分10
2秒前
duo完成签到,获得积分10
3秒前
4秒前
spurs17发布了新的文献求助10
4秒前
4秒前
善学以致用应助BaekHyun采纳,获得10
4秒前
5秒前
5秒前
nanhe698完成签到,获得积分10
6秒前
6秒前
李本来完成签到,获得积分20
7秒前
看看发布了新的文献求助10
7秒前
ZZY完成签到,获得积分10
7秒前
DQY完成签到,获得积分10
8秒前
BONBON完成签到,获得积分20
8秒前
动听导师发布了新的文献求助10
9秒前
9秒前
季忆完成签到,获得积分10
9秒前
小周发布了新的文献求助10
10秒前
smile发布了新的文献求助10
10秒前
11秒前
Lore完成签到 ,获得积分10
11秒前
11秒前
jiang完成签到,获得积分10
12秒前
12秒前
无奈的酒窝关注了科研通微信公众号
13秒前
毛毛完成签到,获得积分10
13秒前
正在完成签到,获得积分10
14秒前
14秒前
充电宝应助JR采纳,获得10
15秒前
15秒前
cc完成签到,获得积分20
15秒前
李爱国应助111采纳,获得10
15秒前
jy发布了新的文献求助10
15秒前
好好完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808