Ferroelectrically-enhanced Schottky barrier transistors for Logic-in-Memory applications

肖特基势垒 晶体管 材料科学 计算机科学 光电子学 电气工程 工程类 电压 二极管
作者
Daniele Nazzari,Lukas Wind,Masiar Sistani,Dominik Mayr,Kihye Kim,W. Weber
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.19535
摘要

Artificial neural networks (ANNs) have had an enormous impact on a multitude of sectors, from research to industry, generating an unprecedented demand for tailor-suited hardware platforms. Their training and execution is highly memory-intensive, clearly evidencing the limitations affecting the currently available hardware based on the von Neumann architecture, which requires frequent data shuttling due to the physical separation of logic and memory units. This does not only limit the achievable performances but also greatly increases the energy consumption, hindering the integration of ANNs into low-power platforms. New Logic in Memory (LiM) architectures, able to unify memory and logic functionalities into a single component, are highly promising for overcoming these limitations, by drastically reducing the need of data transfers. Recently, it has been shown that a very flexible platform for logic applications can be realized recurring to a multi-gated Schottky-Barrier Field Effect Transistor (SBFET). If equipped with memory capabilities, this architecture could represent an ideal building block for versatile LiM hardware. To reach this goal, here we investigate the integration of a ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO) layer onto Dual Top Gated SBFETs. We demonstrate that HZO polarization charges can be successfully employed to tune the height of the two Schottky barriers, influencing the injection behavior, thus defining the transistor mode, switching it between n and p-type transport. The modulation strength is strongly dependent on the polarization pulse height, allowing for the selection of multiple current levels. All these achievable states can be well retained over time, thanks to the HZO stability. The presented result show how ferroelectric-enhanced SBFETs are promising for the realization of novel LiM hardware, enabling low-power circuits for ANNs execution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ellalala发布了新的文献求助10
刚刚
汉堡包应助sunhealth采纳,获得10
1秒前
JamesPei应助JamesYang采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
烟花应助科研通管家采纳,获得30
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
我是老大应助liuhang采纳,获得50
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
可靠小懒虫完成签到,获得积分10
3秒前
3秒前
BCM发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
小周长大开飞船完成签到 ,获得积分10
8秒前
蓝天发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
13秒前
volcano发布了新的文献求助10
14秒前
zhaojiantgu完成签到 ,获得积分10
14秒前
我我我完成签到,获得积分10
15秒前
可爱千兰完成签到,获得积分10
16秒前
鱼鱼吖发布了新的文献求助10
18秒前
Twinkle完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317