Ferroelectrically-enhanced Schottky barrier transistors for Logic-in-Memory applications

肖特基势垒 晶体管 材料科学 计算机科学 光电子学 电气工程 工程类 电压 二极管
作者
Daniele Nazzari,Lukas Wind,Masiar Sistani,Dominik Mayr,Kihye Kim,W. Weber
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.19535
摘要

Artificial neural networks (ANNs) have had an enormous impact on a multitude of sectors, from research to industry, generating an unprecedented demand for tailor-suited hardware platforms. Their training and execution is highly memory-intensive, clearly evidencing the limitations affecting the currently available hardware based on the von Neumann architecture, which requires frequent data shuttling due to the physical separation of logic and memory units. This does not only limit the achievable performances but also greatly increases the energy consumption, hindering the integration of ANNs into low-power platforms. New Logic in Memory (LiM) architectures, able to unify memory and logic functionalities into a single component, are highly promising for overcoming these limitations, by drastically reducing the need of data transfers. Recently, it has been shown that a very flexible platform for logic applications can be realized recurring to a multi-gated Schottky-Barrier Field Effect Transistor (SBFET). If equipped with memory capabilities, this architecture could represent an ideal building block for versatile LiM hardware. To reach this goal, here we investigate the integration of a ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO) layer onto Dual Top Gated SBFETs. We demonstrate that HZO polarization charges can be successfully employed to tune the height of the two Schottky barriers, influencing the injection behavior, thus defining the transistor mode, switching it between n and p-type transport. The modulation strength is strongly dependent on the polarization pulse height, allowing for the selection of multiple current levels. All these achievable states can be well retained over time, thanks to the HZO stability. The presented result show how ferroelectric-enhanced SBFETs are promising for the realization of novel LiM hardware, enabling low-power circuits for ANNs execution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时迁完成签到 ,获得积分10
1秒前
1秒前
领导范儿应助胡萝卜叶子采纳,获得10
1秒前
wanci应助害羞的诺言采纳,获得10
2秒前
4秒前
kate完成签到,获得积分10
5秒前
ECHO发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
朱春阳发布了新的文献求助10
9秒前
9秒前
moon发布了新的文献求助30
10秒前
BowieHuang应助从容的方盒采纳,获得10
10秒前
11秒前
11秒前
伶俐的静柏完成签到,获得积分10
15秒前
华盛顿发布了新的文献求助10
16秒前
搜集达人应助天一采纳,获得10
16秒前
miao发布了新的文献求助10
16秒前
16秒前
唐小鸭完成签到,获得积分10
16秒前
Ava应助朱春阳采纳,获得10
17秒前
王某人完成签到 ,获得积分10
17秒前
18秒前
18秒前
我无线用咯完成签到,获得积分10
18秒前
求助人员发布了新的文献求助10
20秒前
王DD完成签到,获得积分10
20秒前
AUK发布了新的文献求助10
21秒前
唐小鸭发布了新的文献求助20
21秒前
moon完成签到,获得积分10
23秒前
图苏完成签到,获得积分10
26秒前
里尔吉恩完成签到,获得积分10
27秒前
28秒前
IamHK发布了新的文献求助10
29秒前
29秒前
kun完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
我是老大应助nostalgic采纳,获得10
30秒前
科研路一直绿灯完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241