Communication-Efficient Federated Learning with Adaptive Aggregation for Heterogeneous Client-Edge-Cloud Network

计算机科学 云计算 趋同(经济学) 架空(工程) GSM演进的增强数据速率 分布式计算 边缘设备 节点(物理) 边缘计算 绩效改进 人工智能 结构工程 操作系统 工程类 经济 经济增长 运营管理
作者
Long Luo,Chi Zhang,Hongfang Yu,Gang Sun,Shouxi Luo,Schahram Dustdar
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tsc.2024.3399649
摘要

Client-edge-cloud Federated Learning (CEC-FL) is emerging as an increasingly popular FL paradigm, alleviating the performance limitations of conventional cloud-centric Federated Learning (FL) by incorporating edge computing. However, improving training efficiency while retaining model convergence is not easy in CEC-FL. Although controlling aggregation frequency exhibits great promise in improving efficiency by reducing communication overhead, existing works still struggle to simultaneously achieve satisfactory training efficiency and model convergence performance in heterogeneous and dynamic environments. This paper proposes FedAda, a communication-efficient CEC-FL training method that aims to enhance training performance while ensuring model convergence through adaptive aggregation frequency adjustment. To this end, we theoretically analyze the model convergence under aggregation frequency control. Based on this analysis of the relationship between model convergence and aggregation frequencies, we propose an approximation algorithm to calculate aggregation frequencies, considering convergence and aligning with heterogeneous and dynamic node capabilities, ultimately achieving superior convergence accuracy and speed. Simulation results validate the effectiveness and efficiency of FedAda, demonstrating up to 4% improvement in test accuracy, 6.8× shorter training time and 3.3× less communication overhead compared to prior solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验室应助wz采纳,获得30
1秒前
Akim应助高兴的羊采纳,获得10
1秒前
1秒前
1秒前
FashionBoy应助nicoco采纳,获得10
2秒前
共享精神应助Thestar采纳,获得10
2秒前
二三发布了新的文献求助10
2秒前
刘沛鑫完成签到,获得积分10
3秒前
4秒前
淡淡土豆应助記yian采纳,获得10
4秒前
zzcherished发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
lchenbio完成签到,获得积分10
6秒前
刘沛鑫发布了新的文献求助10
6秒前
Akim应助小树苗采纳,获得20
7秒前
8秒前
8秒前
极品男大完成签到,获得积分10
8秒前
8秒前
yznfly应助Yangyang采纳,获得200
8秒前
9秒前
赘婿应助天真千易采纳,获得10
9秒前
田様应助天真千易采纳,获得10
9秒前
在水一方应助天真千易采纳,获得10
9秒前
传奇3应助天真千易采纳,获得10
9秒前
10秒前
Orange应助小哥采纳,获得10
10秒前
10秒前
无花果应助加减乘除采纳,获得10
10秒前
xiaojie2024发布了新的文献求助10
11秒前
12秒前
ww发布了新的文献求助10
13秒前
高兴的羊发布了新的文献求助10
14秒前
大海发布了新的文献求助10
14秒前
了了发布了新的文献求助10
15秒前
kidney发布了新的文献求助10
15秒前
小二郎应助天真千易采纳,获得10
16秒前
Lucas应助天真千易采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675