Automated hepatic steatosis assessment on dual-energy CT-derived virtual non-contrast images through fully-automated 3D organ segmentation

脂肪变性 接收机工作特性 核医学 磁共振成像 组内相关 医学 放射科 内科学 临床心理学 心理测量学
作者
Sun Kyung Jeon,Ijin Joo,Ijin Joo,Ijin Joo
出处
期刊:Radiologia Medica [Springer Science+Business Media]
标识
DOI:10.1007/s11547-024-01833-8
摘要

Abstract Purpose To evaluate the efficacy of volumetric CT attenuation-based parameters obtained through automated 3D organ segmentation on virtual non-contrast (VNC) images from dual-energy CT (DECT) for assessing hepatic steatosis. Materials and methods This retrospective study included living liver donor candidates having liver DECT and MRI-determined proton density fat fraction (PDFF) assessments. Employing a 3D deep learning algorithm, the liver and spleen were automatically segmented from VNC images (derived from contrast-enhanced DECT scans) and true non-contrast (TNC) images, respectively. Mean volumetric CT attenuation values of each segmented liver (L) and spleen (S) were measured, allowing for liver attenuation index (LAI) calculation, defined as L minus S. Agreements of VNC and TNC parameters for hepatic steatosis, i.e., L and LAI, were assessed using intraclass correlation coefficients (ICC). Correlations between VNC parameters and MRI-PDFF values were assessed using the Pearson’s correlation coefficient. Their performance to identify MRI-PDFF ≥ 5% and ≥ 10% was evaluated using receiver operating characteristic (ROC) curve analysis. Results Of 252 participants, 56 (22.2%) and 16 (6.3%) had hepatic steatosis with MRI-PDFF ≥ 5% and ≥ 10%, respectively. L VNC and LAI VNC showed excellent agreement with L TNC and LAI TNC (ICC = 0.957 and 0.968) and significant correlations with MRI-PDFF values (r = − 0.585 and − 0.588, Ps < 0.001). L VNC and LAI VNC exhibited areas under the ROC curve of 0.795 and 0.806 for MRI-PDFF ≥ 5%; and 0.916 and 0.932, for MRI-PDFF ≥ 10%, respectively. Conclusion Volumetric CT attenuation-based parameters from VNC images generated by DECT, via automated 3D segmentation of the liver and spleen, have potential for opportunistic hepatic steatosis screening, as an alternative to TNC images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
阵雨完成签到,获得积分10
2秒前
雪山飞狐发布了新的文献求助30
2秒前
meteor完成签到,获得积分10
2秒前
乐乐应助论文写到头秃采纳,获得10
2秒前
JamesPei应助熠烁采纳,获得10
2秒前
纯真以松发布了新的文献求助30
2秒前
充电宝应助chenhunhun采纳,获得10
2秒前
3秒前
3秒前
小肖的KYT完成签到,获得积分10
3秒前
烟花应助少雄采纳,获得10
4秒前
6秒前
6秒前
meteor发布了新的文献求助10
6秒前
cbbb完成签到,获得积分10
7秒前
smile完成签到,获得积分10
8秒前
9秒前
机智羞花发布了新的文献求助10
9秒前
阿鹏发布了新的文献求助20
9秒前
QZZ发布了新的文献求助10
9秒前
毕不了业要赔钱完成签到,获得积分10
9秒前
仁和远发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
qunli完成签到,获得积分10
11秒前
酷波er应助月亮采纳,获得10
11秒前
11秒前
psycho完成签到,获得积分10
11秒前
12秒前
桐桐应助一个采纳,获得10
12秒前
安生完成签到,获得积分10
12秒前
clyhg完成签到,获得积分10
13秒前
bkagyin应助江江jiang采纳,获得50
13秒前
13秒前
无足鸟完成签到 ,获得积分10
13秒前
13秒前
hist123完成签到,获得积分10
14秒前
桐桐应助坦率紫烟采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662070
求助须知:如何正确求助?哪些是违规求助? 3222916
关于积分的说明 9749481
捐赠科研通 2932714
什么是DOI,文献DOI怎么找? 1605824
邀请新用户注册赠送积分活动 758141
科研通“疑难数据库(出版商)”最低求助积分说明 734700