An extensive study of security games with strategic informants

贝叶斯博弈 斯塔克伯格竞赛 计算机科学 计算机安全 运筹学 博弈论 阻截 重复博弈 微观经济学 经济 数学 工程类 航空航天工程
作者
Weiran Shen,Minbiao Han,W P Chen,Taoan Huang,Rohit Singh,Haifeng Xu,Fei Fang
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:334: 104162-104162
标识
DOI:10.1016/j.artint.2024.104162
摘要

Over the past years, game-theoretic modeling for security and public safety issues (also known as security games) have attracted intensive research attention and have been successfully deployed in many real-world applications for fighting, e.g., illegal poaching, fishing and urban crimes. However, few existing works consider how information from local communities would affect the structure of these games. In this paper, we systematically investigate how a new type of players – strategic informants who are from local communities and may observe and report upcoming attacks – affects the classic defender-attacker security interactions. Characterized by a private type, each informant has a utility structure that drives their strategic behaviors. For situations with a single informant, we capture the problem as a 3-player extensive-form game and develop a novel solution concept, Strong Stackelberg-perfect Bayesian equilibrium, for the game. To find an optimal defender strategy, we establish that though the informant can have infinitely many types in general, there always exists an optimal defense plan using only a linear number of patrol strategies; this succinct characterization then enables us to efficiently solve the game via linear programming. For situations with multiple informants, we show that there is also an optimal defense plan with only a linear number of patrol strategies that admits a simple structure based on plurality voting among multiple informants. Finally, we conduct extensive experiments to study the effect of the strategic informants and demonstrate the efficiency of our algorithm. Our experiments show that the existence of such informants significantly increases the defender's utility. Even though the informants exhibit strategic behaviors, the information they supply holds great value as defensive resources. Compared to existing works, our study leads to a deeper understanding on the role of informants in such defender-attacker interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的紫菜完成签到,获得积分10
刚刚
23132发布了新的文献求助10
1秒前
cora完成签到,获得积分10
2秒前
放眼天下完成签到 ,获得积分10
3秒前
文毛完成签到,获得积分10
3秒前
3秒前
4秒前
兴奋的问旋完成签到,获得积分10
4秒前
张张完成签到,获得积分10
4秒前
陈文学完成签到,获得积分10
5秒前
一一发布了新的文献求助10
5秒前
bkagyin应助潇洒的冷玉采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
6秒前
芒果完成签到,获得积分10
6秒前
7秒前
cly3397完成签到,获得积分10
7秒前
开心发布了新的文献求助10
7秒前
7秒前
少年发布了新的文献求助10
8秒前
天天快乐应助阿毛采纳,获得10
8秒前
Jenny应助狂野的以珊采纳,获得10
8秒前
9秒前
9秒前
10秒前
11秒前
研友_LMNjkn发布了新的文献求助10
11秒前
ding应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
yizhiGao应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
pinging应助科研通管家采纳,获得10
12秒前
唠叨的月光完成签到,获得积分10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
清爽老九应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794