An extensive study of security games with strategic informants

贝叶斯博弈 斯塔克伯格竞赛 计算机科学 计算机安全 运筹学 博弈论 阻截 重复博弈 微观经济学 经济 数学 工程类 航空航天工程
作者
Weiran Shen,Minbiao Han,W P Chen,Taoan Huang,Rohit Singh,Haifeng Xu,Fei Fang
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:334: 104162-104162
标识
DOI:10.1016/j.artint.2024.104162
摘要

Over the past years, game-theoretic modeling for security and public safety issues (also known as security games) have attracted intensive research attention and have been successfully deployed in many real-world applications for fighting, e.g., illegal poaching, fishing and urban crimes. However, few existing works consider how information from local communities would affect the structure of these games. In this paper, we systematically investigate how a new type of players – strategic informants who are from local communities and may observe and report upcoming attacks – affects the classic defender-attacker security interactions. Characterized by a private type, each informant has a utility structure that drives their strategic behaviors. For situations with a single informant, we capture the problem as a 3-player extensive-form game and develop a novel solution concept, Strong Stackelberg-perfect Bayesian equilibrium, for the game. To find an optimal defender strategy, we establish that though the informant can have infinitely many types in general, there always exists an optimal defense plan using only a linear number of patrol strategies; this succinct characterization then enables us to efficiently solve the game via linear programming. For situations with multiple informants, we show that there is also an optimal defense plan with only a linear number of patrol strategies that admits a simple structure based on plurality voting among multiple informants. Finally, we conduct extensive experiments to study the effect of the strategic informants and demonstrate the efficiency of our algorithm. Our experiments show that the existence of such informants significantly increases the defender's utility. Even though the informants exhibit strategic behaviors, the information they supply holds great value as defensive resources. Compared to existing works, our study leads to a deeper understanding on the role of informants in such defender-attacker interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助zhongchengzhai采纳,获得10
1秒前
2秒前
追寻笑寒完成签到,获得积分10
2秒前
3秒前
现代书雪发布了新的文献求助10
4秒前
冯大哥完成签到,获得积分10
4秒前
科研通AI2S应助huo采纳,获得10
5秒前
hygge发布了新的文献求助10
7秒前
asd发布了新的文献求助30
7秒前
搜集达人应助文卿采纳,获得10
7秒前
bofu发布了新的文献求助10
8秒前
8秒前
yier发布了新的文献求助10
8秒前
8秒前
小章发布了新的文献求助20
9秒前
joy完成签到 ,获得积分10
10秒前
10秒前
10秒前
wanci应助现代书雪采纳,获得10
12秒前
佟蓝血发布了新的文献求助10
13秒前
张皓123发布了新的文献求助10
13秒前
14秒前
serene发布了新的文献求助10
14秒前
无聊的霸完成签到,获得积分10
15秒前
FashionBoy应助hygge采纳,获得10
16秒前
汉堡包应助笑笑采纳,获得30
17秒前
美好斓发布了新的文献求助10
18秒前
搜集达人应助张皓123采纳,获得10
19秒前
19秒前
金梦丽完成签到,获得积分10
20秒前
阿辽发布了新的文献求助30
21秒前
21秒前
22秒前
23秒前
完美世界应助TQY采纳,获得10
23秒前
vfuisNBIO发布了新的文献求助10
23秒前
mmol发布了新的文献求助30
24秒前
nns发布了新的文献求助10
24秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124565
求助须知:如何正确求助?哪些是违规求助? 2774891
关于积分的说明 7724521
捐赠科研通 2430358
什么是DOI,文献DOI怎么找? 1291087
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297