An extensive study of security games with strategic informants

贝叶斯博弈 斯塔克伯格竞赛 计算机科学 计算机安全 运筹学 博弈论 阻截 重复博弈 微观经济学 经济 数学 工程类 航空航天工程
作者
Weiran Shen,Minbiao Han,W P Chen,Taoan Huang,Rohit Singh,Haifeng Xu,Fei Fang
出处
期刊:Artificial Intelligence [Elsevier BV]
卷期号:334: 104162-104162
标识
DOI:10.1016/j.artint.2024.104162
摘要

Over the past years, game-theoretic modeling for security and public safety issues (also known as security games) have attracted intensive research attention and have been successfully deployed in many real-world applications for fighting, e.g., illegal poaching, fishing and urban crimes. However, few existing works consider how information from local communities would affect the structure of these games. In this paper, we systematically investigate how a new type of players – strategic informants who are from local communities and may observe and report upcoming attacks – affects the classic defender-attacker security interactions. Characterized by a private type, each informant has a utility structure that drives their strategic behaviors. For situations with a single informant, we capture the problem as a 3-player extensive-form game and develop a novel solution concept, Strong Stackelberg-perfect Bayesian equilibrium, for the game. To find an optimal defender strategy, we establish that though the informant can have infinitely many types in general, there always exists an optimal defense plan using only a linear number of patrol strategies; this succinct characterization then enables us to efficiently solve the game via linear programming. For situations with multiple informants, we show that there is also an optimal defense plan with only a linear number of patrol strategies that admits a simple structure based on plurality voting among multiple informants. Finally, we conduct extensive experiments to study the effect of the strategic informants and demonstrate the efficiency of our algorithm. Our experiments show that the existence of such informants significantly increases the defender's utility. Even though the informants exhibit strategic behaviors, the information they supply holds great value as defensive resources. Compared to existing works, our study leads to a deeper understanding on the role of informants in such defender-attacker interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助舒心的翅膀采纳,获得10
1秒前
小二郎应助Cupid采纳,获得100
1秒前
科研通AI5应助初学者采纳,获得10
2秒前
3秒前
hhh发布了新的文献求助10
4秒前
SHAlao发布了新的文献求助10
7秒前
强强强强完成签到,获得积分10
7秒前
放放发布了新的文献求助30
8秒前
casino完成签到,获得积分10
9秒前
9秒前
9秒前
犹豫小玉完成签到,获得积分20
9秒前
xiaocai完成签到,获得积分20
9秒前
10秒前
11秒前
莉莉卡i完成签到,获得积分10
11秒前
hhh完成签到 ,获得积分20
12秒前
bkagyin应助苗条发箍采纳,获得10
12秒前
elever11发布了新的文献求助20
12秒前
min发布了新的文献求助10
13秒前
Orange应助杨旭东采纳,获得10
14秒前
xzy998应助欣喜翠绿采纳,获得10
15秒前
lzq123456发布了新的文献求助10
15秒前
15秒前
16秒前
李有钱发布了新的文献求助10
17秒前
wanwan应助严惜采纳,获得10
17秒前
传奇3应助树莓ae采纳,获得10
20秒前
21秒前
阔达的扬完成签到,获得积分10
21秒前
亦L发布了新的文献求助10
23秒前
23秒前
23秒前
无奈的铅笔完成签到,获得积分20
23秒前
25秒前
无聊的莺发布了新的文献求助10
26秒前
伏坎发布了新的文献求助10
27秒前
vkqing发布了新的文献求助10
28秒前
科研通AI5应助花花521采纳,获得10
29秒前
Wendy关注了科研通微信公众号
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442