射弹
蜂巢
夹层结构复合材料
芯(光纤)
材料科学
复合材料
蜂窝结构
结构工程
工程类
冶金
作者
Ahsan Ul Haq,Suresh Kumar Reddy Narala
标识
DOI:10.1016/j.engfailanal.2024.108538
摘要
Honeycomb sandwich panels (HSPs) are extensively employed across various industries owing to their outstanding strength and capacity for energy absorption. Despite their widespread use, the potential of additively manufactured (AM) honeycombs in ballistic protection remains relatively unexplored. This study aims to comprehensively assess the energy absorption performance of two distinct HSP configurations, namely AuxHex and Hierarchical, through high-velocity impact tests spanning velocities ranging from 220 to 270 m/s. The high-velocity impact experiments are conducted using a single-stage pneumatic gun, complemented by simulations executed via Abaqus/Explicit. Our findings reveal that the hierarchical HSP demonstrated a notable 9.6 % enhancement in energy absorption compared to panels featuring an AuxHex honeycomb. Interestingly, the hierarchical panels also necessitated 4.8 % more energy for perforation. In terms of failure mechanisms, both sheets of the HSPs experienced ductile shearing, with the formation of characteristic petal-like structures. Concurrently, the honeycomb core underwent fragmentation on the side facing the projectile, while plugs were ejected from the back sheet. Moreover, our analysis indicates that the residual deflection of the back sheet surpassed that of the striking sheet by 15–20 %. This disparity can be attributed to prolonged contact duration and variations in interaction forces between the sheets. Overall, this investigation provides valuable insights into the energy absorption capabilities of AM honeycomb-based HSPs under high-velocity impact conditions, shedding light on their potential for enhanced ballistic protection in various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI