Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets

地质学 同种类的 聚类分析 压力(语言学) 矿物学 几何学 数学 统计 组合数学 哲学 语言学
作者
Atsushi Yamaji,Ken-ichiro Honma,Shin Koshiya
出处
期刊:Journal of Structural Geology [Elsevier]
卷期号:185: 105186-105186
标识
DOI:10.1016/j.jsg.2024.105186
摘要

It is easy to draw stress trajectories to investigate the present stress field by interpolating stress orientations determined at control points. However, challenges arise when we deal with the trajectories of paleostresses, because neighboring control points may have the stress orientations of different tectonic phases. We must choose coeval stresses to draw the trajectories. Recent stress inversion techniques can separate stresses from heterogeneous data from fault, dilational fractures, etc. Natural data sets from those structures are often heterogeneous, and age data are usually not enough to classify the stresses by age. As a result, an unsupervised classification problem of the inversion results must be solved to draw the trajectories. Here, we propose a simple and heuristic procedure for this problem. We assume smooth trajectories during each of the phases. The smoothness makes density-based clustering adoptable to solve the problem. The heterogeneity of data sets allows the additional partition of the clusters. As a worked exercise for this technique, the trajectories of minimum horizontal stress orientations were drawn based on the paleostresses determined from the attitudes of felsic dikes and quartz veins formed in mid Cretaceous orogeny in the North Kitakami Terrain, northern Japan. The orogen-parallel and orogen-perpendicular extensional stress fields delineated by the present technique were probably the manifestations, respectively, of the gravitational collapse of the orogen and of regional extensional tectonics in the Far East.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PRIPRO发布了新的文献求助30
1秒前
1秒前
LiDaYang完成签到,获得积分10
2秒前
打打应助欢喜德天采纳,获得10
2秒前
无花果应助刻痕采纳,获得10
3秒前
dongdong完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
wu发布了新的文献求助10
5秒前
7秒前
Mic应助二二采纳,获得10
7秒前
FashionBoy应助新鲜的护发素采纳,获得10
8秒前
8秒前
PRIPRO完成签到,获得积分20
9秒前
AFASF发布了新的文献求助10
9秒前
sjc发布了新的文献求助10
10秒前
大智若愚骨头完成签到,获得积分10
10秒前
机灵的鸣凤完成签到,获得积分10
11秒前
Jasper应助乌龟娟采纳,获得10
12秒前
禾研发布了新的文献求助30
14秒前
酷波er应助二郎显圣真菌采纳,获得10
15秒前
赘婿应助keyandagou采纳,获得10
15秒前
16秒前
彩色的芝麻完成签到 ,获得积分10
16秒前
19秒前
搜集达人应助口外彭于晏采纳,获得30
22秒前
22秒前
dengdengdeng完成签到,获得积分10
22秒前
000发布了新的文献求助10
22秒前
简单面包完成签到,获得积分10
22秒前
23秒前
微笑夜香完成签到,获得积分10
24秒前
AFASF完成签到,获得积分10
24秒前
24秒前
桃子完成签到,获得积分10
25秒前
25秒前
CipherSage应助CJ采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
一只眠羊发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434387
求助须知:如何正确求助?哪些是违规求助? 4546683
关于积分的说明 14203721
捐赠科研通 4466645
什么是DOI,文献DOI怎么找? 2448251
邀请新用户注册赠送积分活动 1439061
关于科研通互助平台的介绍 1415945