Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets

地质学 同种类的 聚类分析 压力(语言学) 矿物学 几何学 数学 统计 组合数学 哲学 语言学
作者
Atsushi Yamaji,Ken-ichiro Honma,Shin Koshiya
出处
期刊:Journal of Structural Geology [Elsevier]
卷期号:185: 105186-105186
标识
DOI:10.1016/j.jsg.2024.105186
摘要

It is easy to draw stress trajectories to investigate the present stress field by interpolating stress orientations determined at control points. However, challenges arise when we deal with the trajectories of paleostresses, because neighboring control points may have the stress orientations of different tectonic phases. We must choose coeval stresses to draw the trajectories. Recent stress inversion techniques can separate stresses from heterogeneous data from fault, dilational fractures, etc. Natural data sets from those structures are often heterogeneous, and age data are usually not enough to classify the stresses by age. As a result, an unsupervised classification problem of the inversion results must be solved to draw the trajectories. Here, we propose a simple and heuristic procedure for this problem. We assume smooth trajectories during each of the phases. The smoothness makes density-based clustering adoptable to solve the problem. The heterogeneity of data sets allows the additional partition of the clusters. As a worked exercise for this technique, the trajectories of minimum horizontal stress orientations were drawn based on the paleostresses determined from the attitudes of felsic dikes and quartz veins formed in mid Cretaceous orogeny in the North Kitakami Terrain, northern Japan. The orogen-parallel and orogen-perpendicular extensional stress fields delineated by the present technique were probably the manifestations, respectively, of the gravitational collapse of the orogen and of regional extensional tectonics in the Far East.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小马嘻嘻关注了科研通微信公众号
刚刚
情怀应助高大从雪采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
动人的莞完成签到,获得积分10
2秒前
2秒前
LZR完成签到,获得积分10
2秒前
Yan0909完成签到,获得积分10
2秒前
沉静白翠发布了新的文献求助10
3秒前
3秒前
4秒前
谦让的博完成签到,获得积分10
4秒前
无花果应助邹秋雨采纳,获得10
4秒前
4秒前
Amyur完成签到,获得积分10
4秒前
wan4221完成签到,获得积分10
5秒前
5秒前
GG发布了新的文献求助10
5秒前
glow完成签到,获得积分10
5秒前
动人的莞发布了新的文献求助100
5秒前
唯有发布了新的文献求助10
6秒前
靴子完成签到,获得积分10
6秒前
完美世界应助Yan0909采纳,获得10
6秒前
脑洞疼应助姬因采纳,获得10
7秒前
打打应助鲤黎黎采纳,获得10
7秒前
我wo发布了新的文献求助10
7秒前
丰富无色完成签到,获得积分10
7秒前
7秒前
cyy发布了新的文献求助10
7秒前
明亮的蝴蝶完成签到,获得积分20
7秒前
程雪霞发布了新的文献求助30
7秒前
轻歌水越发布了新的文献求助10
8秒前
8秒前
自信雪冥完成签到,获得积分10
8秒前
taotie发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836