Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets

地质学 同种类的 聚类分析 压力(语言学) 矿物学 几何学 数学 统计 组合数学 哲学 语言学
作者
Atsushi Yamaji,Ken-ichiro Honma,Shin Koshiya
出处
期刊:Journal of Structural Geology [Elsevier]
卷期号:185: 105186-105186
标识
DOI:10.1016/j.jsg.2024.105186
摘要

It is easy to draw stress trajectories to investigate the present stress field by interpolating stress orientations determined at control points. However, challenges arise when we deal with the trajectories of paleostresses, because neighboring control points may have the stress orientations of different tectonic phases. We must choose coeval stresses to draw the trajectories. Recent stress inversion techniques can separate stresses from heterogeneous data from fault, dilational fractures, etc. Natural data sets from those structures are often heterogeneous, and age data are usually not enough to classify the stresses by age. As a result, an unsupervised classification problem of the inversion results must be solved to draw the trajectories. Here, we propose a simple and heuristic procedure for this problem. We assume smooth trajectories during each of the phases. The smoothness makes density-based clustering adoptable to solve the problem. The heterogeneity of data sets allows the additional partition of the clusters. As a worked exercise for this technique, the trajectories of minimum horizontal stress orientations were drawn based on the paleostresses determined from the attitudes of felsic dikes and quartz veins formed in mid Cretaceous orogeny in the North Kitakami Terrain, northern Japan. The orogen-parallel and orogen-perpendicular extensional stress fields delineated by the present technique were probably the manifestations, respectively, of the gravitational collapse of the orogen and of regional extensional tectonics in the Far East.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的不愁完成签到 ,获得积分20
1秒前
zmin发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
vincent完成签到,获得积分10
2秒前
秦长春发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
无花果应助激动的曼雁采纳,获得10
3秒前
SSScoups完成签到,获得积分10
4秒前
在水一方应助emmaguo713采纳,获得10
4秒前
平淡的白云完成签到,获得积分10
4秒前
斯文败类应助晞嘻采纳,获得10
4秒前
明亮寒安完成签到,获得积分10
5秒前
5秒前
弥漫的橘发布了新的文献求助20
5秒前
6秒前
Sega完成签到,获得积分10
6秒前
廊桥遗梦发布了新的文献求助10
6秒前
sss完成签到 ,获得积分10
7秒前
英俊的铭应助小华采纳,获得10
7秒前
anubisi发布了新的文献求助30
8秒前
8秒前
流萤发布了新的文献求助10
8秒前
GCY发布了新的文献求助20
8秒前
田彬杰发布了新的文献求助10
9秒前
9秒前
9秒前
杜思淇完成签到,获得积分10
9秒前
kk发布了新的文献求助10
11秒前
Omni发布了新的文献求助10
11秒前
11秒前
Xman完成签到,获得积分10
12秒前
12秒前
褚香旋发布了新的文献求助10
12秒前
12秒前
雪松发布了新的文献求助10
13秒前
14秒前
王十二发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482