亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aspect-enhanced Explainable Recommendation with Multi-modal Contrastive Learning

计算机科学 情态动词 人工智能 自然语言处理 化学 高分子化学
作者
Hao Liao,Shuo Wang,H.-J. Cheng,Wei Zhang,Ji-Wei Zhang,Mingyang Zhou,Kezhong Lu,Rui Mao,Xing Xie
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3673234
摘要

Explainable recommender systems ( ERS ) aim to enhance users’ trust in the systems by offering personalized recommendations with transparent explanations. This transparency provides users with a clear understanding of the rationale behind the recommendations, fostering a sense of confidence and reliability in the system’s outputs. Generally, the explanations are presented in a familiar and intuitive way, which is in the form of natural language, thus enhancing their accessibility to users. Recently, there has been an increasing focus on leveraging reviews as a valuable source of rich information in both modeling user-item preferences and generating textual interpretations, which can be performed simultaneously in a multi-task framework. Despite the progress made in these review-based recommendation systems, the integration of implicit feedback derived from user-item interactions and user-written text reviews has yet to be fully explored. To fill this gap, we propose a model named SERMON (A s pect-enhanced E xplainable R ecommendation with M ulti-modal C o ntrast Lear n ing). Our model explores the application of multimodal contrastive learning to facilitate reciprocal learning across two modalities, thereby enhancing the modeling of user preferences. Moreover, our model incorporates the aspect information extracted from the review, which provides two significant enhancements to our tasks. Firstly, the quality of the generated explanations is improved by incorporating the aspect characteristics into the explanations generated by a pre-trained model with controlled textual generation ability. Secondly, the commonly used user-item interactions are transformed into user-item-aspect interactions, which we refer to as interaction triple, resulting in a more nuanced representation of user preference. To validate the effectiveness of our model, we conduct extensive experiments on three real-world datasets. The experimental results show that our model outperforms state-of-the-art baselines, with a 2.0% improvement in prediction accuracy and a substantial 24.5% enhancement in explanation quality for the TripAdvisor dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助虚拟的念烟采纳,获得10
刚刚
刚刚
梦_筱彩完成签到 ,获得积分10
1秒前
Leo完成签到 ,获得积分10
4秒前
4秒前
始于一发布了新的文献求助10
7秒前
熊巴巴完成签到 ,获得积分10
10秒前
雅典的宠儿完成签到 ,获得积分10
12秒前
始于一完成签到,获得积分10
16秒前
19秒前
无奈书包完成签到,获得积分10
20秒前
21秒前
LMY1411发布了新的文献求助10
22秒前
小芭乐完成签到 ,获得积分10
23秒前
CipherSage应助始于一采纳,获得10
23秒前
h0jian09完成签到,获得积分10
26秒前
DreamRunner0410完成签到 ,获得积分10
33秒前
科研通AI5应助Long采纳,获得10
39秒前
LMY1411完成签到,获得积分10
41秒前
梅一一发布了新的文献求助10
44秒前
斯文败类应助科研通管家采纳,获得10
49秒前
传奇3应助科研通管家采纳,获得10
49秒前
在水一方应助科研通管家采纳,获得10
49秒前
我爱大鸡腿啦啦完成签到,获得积分10
50秒前
50秒前
Long完成签到,获得积分10
51秒前
梅一一完成签到,获得积分10
53秒前
54秒前
聪明紊完成签到 ,获得积分10
55秒前
安息香发布了新的文献求助10
55秒前
59秒前
聪明凌柏完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助安息香采纳,获得10
1分钟前
虚拟的念烟完成签到,获得积分10
1分钟前
1分钟前
Leofar完成签到 ,获得积分10
1分钟前
洸彦完成签到 ,获得积分10
1分钟前
安息香完成签到,获得积分20
1分钟前
Zoe发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526437
求助须知:如何正确求助?哪些是违规求助? 3106899
关于积分的说明 9281805
捐赠科研通 2804367
什么是DOI,文献DOI怎么找? 1539433
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709546