A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges

计算机科学
作者
Yuqi Nie,Yaxuan Kong,Xiaowen Dong,John M. Mulvey,H. Vincent Poor,Qingsong Wen,Stefan Zohren
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2406.11903
摘要

Recent advances in large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain. These models have demonstrated remarkable capabilities in understanding context, processing vast amounts of data, and generating human-preferred contents. In this survey, we explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation. We provide a discussion of the progress and advantages of LLMs in financial contexts, analyzing their advanced technologies as well as prospective capabilities in contextual understanding, transfer learning flexibility, complex emotion detection, etc. We then highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications. For each application area, we delve into specific methodologies, such as textual analysis, knowledge-based analysis, forecasting, data augmentation, planning, decision support, and simulations. Furthermore, a comprehensive collection of datasets, model assets, and useful codes associated with mainstream applications are presented as resources for the researchers and practitioners. Finally, we outline the challenges and opportunities for future research, particularly emphasizing a number of distinctive aspects in this field. We hope our work can help facilitate the adoption and further development of LLMs in the financial sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiajia发布了新的文献求助10
刚刚
巧巧艾完成签到,获得积分10
2秒前
聪慧的娜发布了新的文献求助10
4秒前
4秒前
科研通AI5应助俊逸的翠容采纳,获得10
4秒前
6秒前
小红书求接接接接一篇完成签到,获得积分20
7秒前
科研通AI5应助超酷的柠檬采纳,获得10
10秒前
10秒前
风汐5423发布了新的文献求助10
11秒前
Lucas应助木木火正采纳,获得10
12秒前
白宇完成签到 ,获得积分10
13秒前
人各有痣完成签到,获得积分10
13秒前
落红雨完成签到 ,获得积分10
16秒前
汉堡包应助火星上的沛春采纳,获得10
17秒前
fpsfuxi完成签到,获得积分10
18秒前
HEIKU应助waterimagic2采纳,获得10
21秒前
AR发布了新的文献求助10
23秒前
Lore完成签到 ,获得积分10
25秒前
25秒前
Huyang应助dophin采纳,获得30
26秒前
乐观谷南完成签到,获得积分10
26秒前
26秒前
午午午午完成签到 ,获得积分10
29秒前
30秒前
科研通AI5应助乐观谷南采纳,获得10
30秒前
30秒前
仁爱仙人掌完成签到,获得积分10
30秒前
在水一方应助在水一方采纳,获得10
31秒前
32秒前
33秒前
烟花应助司徒骁采纳,获得10
33秒前
传奇3应助kyyy采纳,获得10
33秒前
34秒前
小鱼完成签到,获得积分10
34秒前
34秒前
34秒前
HM1204++发布了新的文献求助30
37秒前
nini完成签到 ,获得积分10
38秒前
念姬发布了新的文献求助10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667828
求助须知:如何正确求助?哪些是违规求助? 3226294
关于积分的说明 9769102
捐赠科研通 2936239
什么是DOI,文献DOI怎么找? 1608345
邀请新用户注册赠送积分活动 759646
科研通“疑难数据库(出版商)”最低求助积分说明 735434