Exploring the Role of Machine Learning in Diagnosing and Treating Speech Disorders: A Systematic Literature Review

系统回顾 独创性 计算机科学 领域(数学) 人工智能 特征(语言学) 机器学习 心理学 梅德林 语言学 社会心理学 哲学 数学 创造力 政治学 纯数学 法学
作者
Zaki Brahmi,Mohammad Mahyoob,Mohammed Al-Sarem,Jeehaan Algaraady,Khadija Bousselmi,Abdulaziz Alblwi
出处
期刊:Psychology Research and Behavior Management [Dove Medical Press]
卷期号:Volume 17: 2205-2232 被引量:1
标识
DOI:10.2147/prbm.s460283
摘要

Purpose: Speech disorders profoundly impact the overall quality of life by impeding social operations and hindering effective communication. This study addresses the gap in systematic reviews concerning machine learning-based assistive technology for individuals with speech disorders. The overarching purpose is to offer a comprehensive overview of the field through a Systematic Literature Review (SLR) and provide valuable insights into the landscape of ML-based solutions and related studies. Methods: The research employs a systematic approach, utilizing a Systematic Literature Review (SLR) methodology. The study extensively examines the existing literature on machine learning-based assistive technology for speech disorders. Specific attention is given to ML techniques, characteristics of exploited datasets in the training phase, speaker languages, feature extraction techniques, and the features employed by ML algorithms. Originality: This study contributes to the existing literature by systematically exploring the machine learning landscape in assistive technology for speech disorders. The originality lies in the focused investigation of ML-speech recognition for impaired speech disorder users over ten years (2014– 2023). The emphasis on systematic research questions related to ML techniques, dataset characteristics, languages, feature extraction techniques, and feature sets adds a unique and comprehensive perspective to the current discourse. Findings: The systematic literature review identifies significant trends and critical studies published between 2014 and 2023. In the analysis of the 65 papers from prestigious journals, support vector machines and neural networks (CNN, DNN) were the most utilized ML technique (20%, 16.92%), with the most studied disease being Dysarthria (35/65, 54% studies). Furthermore, an upsurge in using neural network-based architectures, mainly CNN and DNN, was observed after 2018. Almost half of the included studies were published between 2021 and 2022). Keywords: speech disorder, speech recognition, dysarthria, machine learning, assistive technologies
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费尔明娜完成签到,获得积分10
3秒前
4秒前
嘉木完成签到 ,获得积分10
4秒前
5秒前
12341完成签到,获得积分10
6秒前
Sherlock完成签到,获得积分10
6秒前
7秒前
阿斯蒂和琴酒完成签到 ,获得积分10
7秒前
8秒前
8秒前
科研顺利发布了新的文献求助100
8秒前
starofjlu完成签到,获得积分10
8秒前
9秒前
干净的时光应助粒粒采纳,获得20
9秒前
完美世界应助Sekiro采纳,获得10
10秒前
12秒前
起風了发布了新的文献求助10
13秒前
crains完成签到 ,获得积分10
13秒前
zj发布了新的文献求助10
15秒前
15秒前
LH发布了新的文献求助10
15秒前
ding应助MY20240406采纳,获得10
15秒前
16秒前
zho应助臭图图采纳,获得10
16秒前
酷波er应助斯文冷梅采纳,获得10
16秒前
Judgen完成签到,获得积分10
16秒前
16秒前
m李完成签到 ,获得积分10
17秒前
Qqqqqq完成签到,获得积分20
19秒前
雅雅完成签到,获得积分10
19秒前
宁安完成签到 ,获得积分10
20秒前
起風了完成签到,获得积分10
21秒前
milu发布了新的文献求助10
22秒前
星辰大海应助annie采纳,获得10
22秒前
Qqqqqq发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
HEIKU应助雅雅采纳,获得10
23秒前
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012