HSFE: A Hierarchical Spatial-temporal Feature Enhanced Framework for Traffic Flow Forecasting

计算机科学 特征(语言学) 流量(计算机网络) 流量(数学) 人工智能 数据挖掘 模式识别(心理学) 数学 计算机安全 几何学 语言学 哲学
作者
Jungang Lou,Xinye Zhang,Ruiqin Wang,Zhenfang Liu,Kang Zhao,Qing Shen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:679: 121070-121070
标识
DOI:10.1016/j.ins.2024.121070
摘要

Currently, spatio-temporal fusion strategy is a key direction in traffic flow prediction. Current work focuses on the intrinsic spatio-temporal dependence of traffic flow data but often ignores the correlation between its actual features, dynamic changes, and other features, such as road occupancy rates and vehicle speeds. This can lead to problems such as the complexity of feature computation. This paper proposes a new framework for predicting traffic flow that enhances spatio-temporal features at multiple levels. The framework includes a periodic embedding module that captures temporal periodicity and encodes input data into more representative feature vectors for model training. Also, a component for fusing parallel channel attention has been designed to adaptively weigh the aggregation of features from global, local, and aggregated channels. This enhances the attention given to important feature information in the model. In addition, a multilevel sequential feature fusion enhancer has been designed that ensures feature processing at different levels. Experimental results on four public transportation datasets demonstrate that the innovative approach enhances the MAE metrics by an average of 2.50%, respectively, over all metrics in the baseline models. Notably, it reduces training time by approximately 50%. This paper also discusses ablation experiments to evaluate the performance of each module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fixing发布了新的文献求助10
刚刚
Liufgui应助champagne采纳,获得30
刚刚
刚刚
无疾而终发布了新的文献求助10
1秒前
1秒前
香蕉觅云应助南瓜气气采纳,获得30
1秒前
1秒前
1秒前
2秒前
yanxueyi完成签到 ,获得积分10
3秒前
无所谓的所谓完成签到,获得积分10
4秒前
jin发布了新的文献求助10
5秒前
5秒前
屿若发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
xiaoq发布了新的文献求助10
8秒前
宁羽发布了新的文献求助10
8秒前
左囧完成签到,获得积分10
9秒前
清脆不斜完成签到,获得积分10
9秒前
岱山完成签到,获得积分10
10秒前
汉堡包应助榴莲小胖采纳,获得10
10秒前
11秒前
俊逸的蛋挞完成签到,获得积分10
11秒前
11秒前
张姐发布了新的文献求助10
12秒前
得失心的诅咒完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
嘚嘚完成签到,获得积分10
13秒前
13秒前
15秒前
英勇珊珊发布了新的文献求助10
16秒前
NexusExplorer应助思维隋采纳,获得10
16秒前
17秒前
计科通发布了新的文献求助30
18秒前
CipherSage应助NSGB采纳,获得10
19秒前
南瓜气气发布了新的文献求助30
21秒前
xiaoq完成签到,获得积分10
22秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202