MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images

计算机科学 计算机视觉 人工智能 医学影像学 计算机断层摄影术 医学物理学 计算机图形学(图像) 解剖 放射科 医学
作者
Yanwu Xu,Li Sun,Wei Peng,Shuyue Jia,Katelyn Morrison,Adam Perer,Afrooz Zandifar,Shyam Visweswaran,Motahhare Eslami,Kayhan Batmanghelich
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3415032
摘要

This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information. While diffusion-based generative models are increasingly used in medical imaging, current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information. The radiology reports can enhance the generation process by providing additional guidance and offering fine-grained control over the synthesis of images. Nevertheless, expanding text-guided generation to high-resolution 3D images poses significant memory and anatomical detail-preserving challenges. Addressing the memory issue, we introduce a hierarchical scheme that uses a modified UNet architecture. We start by synthesizing low-resolution images conditioned on the text, serving as a foundation for subsequent generators for complete volumetric data. To ensure the anatomical plausibility of the generated samples, we provide further guidance by generating vascular, airway, and lobular segmentation masks in conjunction with the CT images. The model demonstrates the capability to use textual input and segmentation tasks to generate synthesized images. Algorithmic comparative assessments and blind evaluations conducted by 10 board-certified radiologists indicate that our approach exhibits superior performance compared to the most advanced models based on GAN and diffusion techniques, especially in accurately retaining crucial anatomical features such as fissure lines and airways. This innovation introduces novel possibilities. This study focuses on two main objectives: (1) the development of a method for creating images based on textual prompts and anatomical components, and (2) the capability to generate new images conditioning on anatomical elements. The advancements in image generation can be applied to enhance numerous downstream tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二可爱发布了新的文献求助10
刚刚
1秒前
zzz发布了新的文献求助10
1秒前
王侯完成签到,获得积分10
1秒前
bkagyin应助panxiang采纳,获得10
1秒前
2秒前
CodeCraft应助这瓜不卖采纳,获得10
2秒前
天天快乐应助小胡采纳,获得10
2秒前
Jasper应助dengqin采纳,获得10
3秒前
bie123发布了新的文献求助10
3秒前
3秒前
今后应助LQN采纳,获得10
4秒前
jinxing完成签到,获得积分10
5秒前
6秒前
坚强沛菡完成签到 ,获得积分10
6秒前
一一完成签到,获得积分10
6秒前
6秒前
Asd发布了新的文献求助10
6秒前
苏辰完成签到,获得积分10
7秒前
Cimon发布了新的文献求助10
7秒前
7秒前
dreamdraver完成签到,获得积分10
8秒前
青蛙打不过小熊完成签到,获得积分10
8秒前
9秒前
jinxing发布了新的文献求助10
9秒前
碧蓝初丹完成签到,获得积分20
9秒前
CodeCraft应助一日大梦千秋采纳,获得10
10秒前
Jasper应助Ploaris采纳,获得10
10秒前
liu发布了新的文献求助10
10秒前
10秒前
10秒前
深情如南完成签到,获得积分20
10秒前
11秒前
11秒前
Dc发布了新的文献求助10
11秒前
Justtry发布了新的文献求助10
11秒前
_xySH发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
13秒前
gomm完成签到,获得积分10
14秒前
feilei发布了新的文献求助10
14秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054832
求助须知:如何正确求助?哪些是违规求助? 2711702
关于积分的说明 7427649
捐赠科研通 2356261
什么是DOI,文献DOI怎么找? 1247983
科研通“疑难数据库(出版商)”最低求助积分说明 606566
版权声明 596083