Solving various NP-hard problems using exponentially fewer qubits on a quantum computer

量子位元 量子计算机 指数增长 计算机科学 量子 数学 量子力学 物理
作者
Yagnik Chatterjee,Eric Bourreau,Marko J. Rančić
出处
期刊:Physical review [American Physical Society]
卷期号:109 (5) 被引量:8
标识
DOI:10.1103/physreva.109.052441
摘要

NP-hard problems are not believed to be exactly solvable through general polynomial time algorithms. Hybrid quantum-classical algorithms to address such combinatorial problems have been of great interest in the past few years. Such algorithms are heuristic in nature and aim to obtain an approximate solution. Significant improvements in computational time and/or the ability to treat large problems are some of the principal promises of quantum computing in this regard. The hardware, however, is still in its infancy and the current noisy intermediate-scale quantum (NISQ) computers are not able to optimize industrially relevant problems. Moreover, the storage of qubits and introduction of entanglement require extreme physical conditions. An issue with quantum optimization algorithms such as the quantum approximate optimization algorithm is that they scale linearly with problem size. In this paper, we build upon a proprietary methodology which scales logarithmically with problem size---opening an avenue for treating optimization problems of unprecedented scale on gate-based quantum computers. To test the performance of the algorithm, we first find a way to apply it to a handful of NP-hard problems: Maximum Cut, Minimum Partition, Maximum Clique, Maximum Weighted Independent Set. Subsequently, these algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256. To our knowledge, these constitute the largest realistic combinatorial optimization problems ever run on a NISQ device, overcoming previous problem sizes by almost tenfold.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DJ关闭了DJ文献求助
刚刚
1秒前
细腻天蓝完成签到 ,获得积分10
1秒前
1秒前
jinyangyang完成签到,获得积分20
2秒前
酷bile完成签到,获得积分10
2秒前
微血管发布了新的文献求助10
2秒前
2秒前
脑洞疼应助向晚采纳,获得30
2秒前
3秒前
4秒前
子车茗应助白小黑采纳,获得30
5秒前
喜悦冰烟发布了新的文献求助10
5秒前
jie酱拌面应助务实天空采纳,获得10
5秒前
李串串发布了新的文献求助10
5秒前
6秒前
呆萌语梦完成签到,获得积分10
6秒前
小羊先生完成签到 ,获得积分10
6秒前
超帅孱发布了新的文献求助10
7秒前
舒心睿渊发布了新的文献求助10
8秒前
向阳而生发布了新的文献求助10
9秒前
9秒前
Jolleyhaha完成签到 ,获得积分10
9秒前
飘逸的麦片完成签到,获得积分10
10秒前
10秒前
请你吃欧润橘完成签到,获得积分20
10秒前
Maga完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
Luckqi6688完成签到,获得积分10
11秒前
可爱的函函应助FZz采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
慕青应助微血管采纳,获得10
12秒前
mcl完成签到,获得积分10
12秒前
研友_VZG7GZ应助哈哈哈哈采纳,获得10
14秒前
14秒前
小Q完成签到,获得积分10
14秒前
南溪发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058