Artemisinin optimization based on malaria therapy: Algorithm and applications to medical image segmentation

图像分割 局部最优 水准点(测量) 人工智能 计算机科学 分割 算法 模式识别(心理学) 地理 大地测量学
作者
Yuan Chong,Dong Zhao,Ali Asghar Heidari,Lei Liu,Yi Chen,Zongda Wu,Huiling Chen
出处
期刊:Displays [Elsevier BV]
卷期号:84: 102740-102740 被引量:44
标识
DOI:10.1016/j.displa.2024.102740
摘要

This study proposes an efficient metaheuristic algorithm called the Artemisinin Optimization (AO) algorithm. This algorithm draws inspiration from the process of artemisinin medicine therapy for malaria, which involves the comprehensive eradication of malarial parasites within the human body. AO comprises three optimization stages: a comprehensive eliminations phase simulating global exploration, a local clearance phase for local exploitation, and a post-consolidation phase to enhance the algorithm's ability to escape local optima. In the experimental, this paper conducts qualitative analysis experiments on the AO, explaining its characteristics in searching for the optimal solution. Subsequently, AO is then tested on the classical IEEE CEC 2014, and the latest IEEE CEC 2022 benchmark function sets to assess its adaptability to various function types. Comparative analyses are conducted against eight well-established algorithms and eight high-performance improved algorithms. Statistical analyses of convergence curves and qualitative metrics revealed AO's robust competitiveness. Lastly, the AO is incorporated into breast cancer pathology image segmentation applications. Using fifteen authentic medical images at six threshold levels, AO's segmentation performance is compared against eight distinguished algorithms. Experimental results demonstrated AO's superiority in terms of image segmentation accuracy, Feature Similarity Index (FSIM), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) over the contrast algorithms. These comparative findings emphasize AO's efficacy and its potential in real-world optimization applications. The source codes of this paper will be available in https://aliasgharheidari.com/AO.html and other public websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddd完成签到 ,获得积分10
刚刚
1秒前
加快步伐发布了新的文献求助10
1秒前
搜集达人应助旭日采纳,获得10
2秒前
prime发布了新的文献求助10
4秒前
螺丝老人发布了新的文献求助10
4秒前
万能图书馆应助聪慧芷巧采纳,获得10
4秒前
扶苏发布了新的文献求助10
7秒前
赘婿应助加快步伐采纳,获得10
7秒前
8秒前
CipherSage应助聪慧芷巧采纳,获得30
8秒前
卑鄙之风完成签到,获得积分10
9秒前
10秒前
liushiyi完成签到,获得积分10
11秒前
cookie1209发布了新的文献求助10
12秒前
可爱的函函应助聪慧芷巧采纳,获得30
12秒前
14秒前
prime完成签到,获得积分10
14秒前
星辰大海应助vanHaren采纳,获得10
15秒前
16秒前
起司应助cookie1209采纳,获得10
16秒前
16秒前
LZNUDT发布了新的文献求助10
16秒前
完美的水杯完成签到 ,获得积分10
17秒前
MichaelLi发布了新的文献求助10
18秒前
18秒前
小蘑菇应助雪雪儿采纳,获得10
19秒前
Owen应助LZNUDT采纳,获得10
19秒前
脑洞疼应助聪慧芷巧采纳,获得10
20秒前
20秒前
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
21秒前
徐小徐发布了新的文献求助10
21秒前
ding应助科研通管家采纳,获得10
21秒前
21秒前
英姑应助好看的鸵鸟采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341