吸附剂
钍
吸附
酰胺
化学
配体(生物化学)
吸附
硝酸
无机化学
核化学
高分子化学
有机化学
材料科学
冶金
铀
生物化学
受体
作者
Peng Lu,Dingzhong Yuan,Xuan Guo,Tengteng He,Jing Huang,Yun Wang,Yan Liu,Xiaohong Zhao,Yan He,Qinghua Zhang
标识
DOI:10.1016/j.seppur.2024.127805
摘要
To develop adsorbents for the preeminent extraction of thorium in strongly acidic solutions is very imperative, due to strong inorganic acids are frequently used in the fuel cycle of thorium. Herein, a robust core–shell magnetic nanocomposite Fe3O4@SiO2/P (MBA-VPA-AM) possessing phosphonic acid and amide was developed via distillation-precipitation copolymerization of N, N'-methylene diacrylamide (MBA), vinylphosphonic acid (VPA) with acrylamide (AM) employing Fe3O4 decorated by SiO2 (Fe3O4@SiO2) as magnetic core. Due to the synergistic effect of phosphonic acid and amide ligand, the sorbent could capture thorium from concentrated HNO3 media efficiently, and the maximum adsorption capacity (qmax) at 4 mol/L of HNO3 solution reached up to 232.5 mg g−1, superior to that of all magnetic sorbents reported previously. Furthermore, the sorbent displayed good selectivity towards thorium in the presence of competitive metal ions including La3+, Nd3+, and Ce3+. The excellent thorium sorption behavior in strong hydrogen nitrate solution was merely ascribed to the complexation of thorium with phosphonic acid ligand, and the amide ligand could not complex with thorium, evidenced by XPS, FT-IR and DFT method. However, the presence of amide ligand could enhance the hydrophilicity of the sorbent and the free movement degree of phosphonic acid ligand to a certain extent, both of which could help to promote the thorium sorption on the sorbent in strong HNO3 media. Besides, due to its core–shell structure and superparamagnetism, the sorbent not only exhibited excellent acidic resistance in strong acid medias, but could be magnetically recouped, which could avoid tedious centrifugation or filtration of traditional adsorbents. This work provides a novel strategy to develop magnetic sorbent for the preeminent entrapment of thorium from strong acid solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI