Semantic Segmentation for Noisy and Limited Wafer Transmission Electron Microscope Images

分割 人工智能 薄脆饼 计算机科学 噪音(视频) 图像分割 计算机视觉 模式识别(心理学) 过程(计算) 尺度空间分割 材料科学 图像(数学) 光电子学 操作系统
作者
Yongwon Jo,Jinsoo Bae,Hansam Cho,Heejoong Roh,Kyunghye Kim,Munki Jo,Jaeung Tae,Seoung Bum Kim
出处
期刊:IEEE Transactions on Semiconductor Manufacturing [IEEE Computer Society]
卷期号:37 (3): 345-354
标识
DOI:10.1109/tsm.2024.3396423
摘要

Semantic segmentation for automated measurement in semiconductor manufacturing, specifically with wafer transmission electron microscopy (TEM) images, poses significant challenges because of the difficulty of acquisition, prevalent noise, and ambiguous object boundaries. However, prior studies focused on broadening the application of semantic segmentation for automated measurement without considering the specific intricacies of TEM images. In this study, we propose a wafer TEM images-specific semantic segmentation and transfer learning (WTEM-SST) framework to address these issues. The proposed WTEM-SST involves a pre-training stage, wafer TEM-specific data augmentation methods, and a boundary-focused loss function. The pre-training stage addresses the difficulty of collecting and annotating wafer TEM images, followed by fine-tuning for process-specific segmentation models. Our data augmentation techniques mitigate challenges related to limited training samples, lots of noise, and unclear boundaries. The boundary-focused loss makes the model more precise in boundary recognition during fine-tuning. We demonstrate that WTEM-SST outperforms conventional segmentation models, with our studies highlighting the effectiveness of the three components in WTEM-SST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
俭朴夏蓉完成签到,获得积分10
1秒前
冉柒完成签到,获得积分10
1秒前
1秒前
夏季橘发布了新的文献求助10
1秒前
3秒前
4秒前
冷酷的小之完成签到,获得积分10
4秒前
LaTeXer应助shihuili采纳,获得10
6秒前
LaTeXer应助shihuili采纳,获得10
6秒前
核桃发布了新的文献求助10
6秒前
6秒前
kevin1018发布了新的文献求助10
6秒前
雍雍完成签到 ,获得积分10
7秒前
tommmmmm15发布了新的文献求助10
7秒前
牛马研究生完成签到,获得积分20
7秒前
8秒前
111发布了新的文献求助10
8秒前
yznfly应助科研通管家采纳,获得30
8秒前
小青椒应助科研通管家采纳,获得20
8秒前
X先生发布了新的文献求助10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
yznfly应助科研通管家采纳,获得30
9秒前
科目三应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
chunfengfusu应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215272
求助须知:如何正确求助?哪些是违规求助? 4390434
关于积分的说明 13669914
捐赠科研通 4252230
什么是DOI,文献DOI怎么找? 2333034
邀请新用户注册赠送积分活动 1330632
关于科研通互助平台的介绍 1284445