Improving risk prediction for death, stroke and bleeding in Asian patients with atrial fibrillation

医学 心房颤动 冲程(发动机) 比例危险模型 危险系数 内科学 心脏病学 预测建模 统计 置信区间 机械工程 工程类 数学
作者
Rungroj Krittayaphong,Wiwat Kanjanarutjawiwat,Treechada Wisaratapong,Gregory Y.H. Lip
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:53 (2) 被引量:5
标识
DOI:10.1111/eci.13886
摘要

The objectives of this study were to compare the GARFIELD Refitted model and CHA2 DS2 -VASc/HAS-BLED risk scores with the new model from the COOL-AF registry for all-cause death, ischaemic stroke/systemic embolism (SSE) and major bleeding in Asian patients with atrial fibrillation (AF).Patients with non-valvular AF in the nationwide COOL-AF registry were studied. Patients were enrolled from 27 hospitals in Thailand during 2014-2017. Main outcomes were all-cause mortality, SSE and major bleeding. Predictive models of the three outcomes were developed from the variables in the multivariable Cox-proportional Hazard model. Predictive values of the models were evaluated by C-statistics, calibration plots and decision curve analysis (DCA). The new COOL-AF models were compared with the GARFIELD Refitted models and CHA2 DS2 -VASc model for all-cause mortality, SSE/HAS-BLED model for major bleeding.A total of 3405 patients were enrolled. The C-statistics for the COOL-AF models were 0.727 (0.712-0.742), 0.708 (0.693-0.724) and 0.706 (0.690-0.721) for all-cause mortality, SSE and major bleeding, respectively. Calibration plots showed good agreement between predicted probability the observed outcomes for the COOL-AF models with a calibration slope of 0.94-0.99. The predictive ability remains preserved after the internal validation with bootstraps and optimism (bias) correction. The COOL-AF predictive models tended to be superior to the GARFIELD Refitted, CHA2 DS2 -VASc and HAS-BLED models.The COOL-AF predictive models for all-cause mortality, SSE and major bleeding in Asian patients with AF had a good predictive ability. The COOL-AF model for all-cause mortality was superior to the GARFIELD Refitted and CHA2 DS2 -VASc model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北方的舟完成签到 ,获得积分10
刚刚
1秒前
1秒前
你要学好发布了新的文献求助10
1秒前
1秒前
今后应助jbear采纳,获得10
2秒前
Lucky完成签到,获得积分10
2秒前
银色的膜发布了新的文献求助10
3秒前
3秒前
yumemakase发布了新的文献求助10
3秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
妖怪大大应助科研通管家采纳,获得10
4秒前
筱灬发布了新的文献求助10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得20
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
顺利的伊应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
Owen应助哇哈哈采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
starofjlu应助科研通管家采纳,获得30
5秒前
5秒前
自私向日葵应助Chemisboy采纳,获得50
5秒前
欣喜的秋灵应助hetao采纳,获得10
5秒前
pluto应助彳亍采纳,获得10
5秒前
宓不评完成签到 ,获得积分10
6秒前
6秒前
h7nho发布了新的文献求助10
6秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919