ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA

计算机科学 代表(政治) 可用性 编码(社会科学) 源代码 图形 人工神经网络 人工智能 非编码RNA 机器学习 生物信息学 理论计算机科学 数据挖掘 核糖核酸 人机交互 数学 生物 操作系统 政治学 统计 基因 政治 法学 生物化学
作者
Hanyu Zhang,Yunxia Wang,Ziqi Pan,Xiuna Sun,Minjie Mou,Bing Zhang,Zhaorong Li,Honglin Li,Feng Zhu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:14
标识
DOI:10.1093/bib/bbac411
摘要

In recent years, many studies have illustrated the significant role that non-coding RNA (ncRNA) plays in biological activities, in which lncRNA, miRNA and especially their interactions have been proved to affect many biological processes. Some in silico methods have been proposed and applied to identify novel lncRNA-miRNA interactions (LMIs), but there are still imperfections in their RNA representation and information extraction approaches, which imply there is still room for further improving their performances. Meanwhile, only a few of them are accessible at present, which limits their practical applications. The construction of a new tool for LMI prediction is thus imperative for the better understanding of their relevant biological mechanisms. This study proposed a novel method, ncRNAInter, for LMI prediction. A comprehensive strategy for RNA representation and an optimized deep learning algorithm of graph neural network were utilized in this study. ncRNAInter was robust and showed better performance of 26.7% higher Matthews correlation coefficient than existing reputable methods for human LMI prediction. In addition, ncRNAInter proved its universal applicability in dealing with LMIs from various species and successfully identified novel LMIs associated with various diseases, which further verified its effectiveness and usability. All source code and datasets are freely available at https://github.com/idrblab/ncRNAInter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sss2021完成签到,获得积分10
刚刚
Eisernem完成签到,获得积分10
刚刚
1秒前
oi完成签到,获得积分10
1秒前
1秒前
1秒前
无私白昼发布了新的文献求助10
2秒前
zkkz完成签到,获得积分10
3秒前
科研通AI6应助无限的绮晴采纳,获得10
3秒前
科研通AI5应助kris采纳,获得10
4秒前
4秒前
权涛发布了新的文献求助10
4秒前
orixero应助江晚正愁余采纳,获得10
4秒前
新兴领袖发布了新的文献求助10
4秒前
liuhongcan完成签到,获得积分10
5秒前
5秒前
lin完成签到,获得积分10
5秒前
5秒前
6秒前
可心X完成签到,获得积分20
6秒前
6秒前
五五完成签到 ,获得积分10
6秒前
6秒前
K丶口袋发布了新的文献求助20
6秒前
淡定依玉完成签到,获得积分10
7秒前
海绵君完成签到,获得积分10
7秒前
island完成签到,获得积分10
7秒前
杨111完成签到 ,获得积分10
7秒前
8秒前
善学以致用应助晚熟稻采纳,获得10
8秒前
权涛完成签到,获得积分10
9秒前
无花果应助Ivyii采纳,获得10
9秒前
Sober发布了新的文献求助10
9秒前
AJY发布了新的文献求助10
9秒前
10秒前
Lucas应助Etnicotinate采纳,获得10
10秒前
FOODHUA完成签到,获得积分10
10秒前
sin发布了新的文献求助10
10秒前
10秒前
海绵君发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541