ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA

计算机科学 代表(政治) 可用性 编码(社会科学) 源代码 图形 人工神经网络 人工智能 非编码RNA 机器学习 生物信息学 理论计算机科学 数据挖掘 核糖核酸 人机交互 数学 生物 操作系统 政治学 统计 基因 政治 法学 生物化学
作者
Hanyu Zhang,Yunxia Wang,Ziqi Pan,Xiuna Sun,Minjie Mou,Bing Zhang,Zhaorong Li,Honglin Li,Feng Zhu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:14
标识
DOI:10.1093/bib/bbac411
摘要

In recent years, many studies have illustrated the significant role that non-coding RNA (ncRNA) plays in biological activities, in which lncRNA, miRNA and especially their interactions have been proved to affect many biological processes. Some in silico methods have been proposed and applied to identify novel lncRNA-miRNA interactions (LMIs), but there are still imperfections in their RNA representation and information extraction approaches, which imply there is still room for further improving their performances. Meanwhile, only a few of them are accessible at present, which limits their practical applications. The construction of a new tool for LMI prediction is thus imperative for the better understanding of their relevant biological mechanisms. This study proposed a novel method, ncRNAInter, for LMI prediction. A comprehensive strategy for RNA representation and an optimized deep learning algorithm of graph neural network were utilized in this study. ncRNAInter was robust and showed better performance of 26.7% higher Matthews correlation coefficient than existing reputable methods for human LMI prediction. In addition, ncRNAInter proved its universal applicability in dealing with LMIs from various species and successfully identified novel LMIs associated with various diseases, which further verified its effectiveness and usability. All source code and datasets are freely available at https://github.com/idrblab/ncRNAInter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安娜驳回了张雷应助
1秒前
完美的冷荷完成签到,获得积分10
3秒前
3秒前
4秒前
Leeny发布了新的文献求助10
6秒前
善学以致用应助XLL小绿绿采纳,获得10
6秒前
7秒前
7秒前
笑点低的碧琴完成签到,获得积分10
9秒前
10秒前
11秒前
西北完成签到,获得积分10
12秒前
小送完成签到,获得积分10
12秒前
13秒前
星光完成签到,获得积分10
14秒前
英吉利25发布了新的文献求助30
16秒前
哈哈哈发布了新的文献求助10
16秒前
顺利的毛衣完成签到,获得积分10
17秒前
18秒前
SYLH应助zz采纳,获得30
19秒前
冬不拉的红糖纸完成签到,获得积分20
19秒前
21秒前
木头完成签到 ,获得积分10
21秒前
哈哈哈完成签到,获得积分10
24秒前
小达人完成签到 ,获得积分10
25秒前
佳佳完成签到,获得积分10
25秒前
ZL完成签到 ,获得积分10
25秒前
26秒前
27秒前
罗rr完成签到 ,获得积分10
28秒前
缓慢的可乐完成签到,获得积分10
33秒前
33秒前
35秒前
笨笨师完成签到,获得积分20
35秒前
XXXX发布了新的文献求助10
36秒前
Owen应助瓦解99采纳,获得10
37秒前
依米zhang完成签到,获得积分10
37秒前
小羊完成签到 ,获得积分10
37秒前
xuxingxing发布了新的文献求助10
37秒前
坚强铸海发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388