Cross-Class Bias Rectification for Point Cloud Few-Shot Segmentation

点云 计算机科学 特征(语言学) 分割 公制(单位) 特征向量 代表(政治) 人工智能 特征提取 模式识别(心理学) 集合(抽象数据类型) 过度拟合 数据挖掘 一般化 数学 政治学 法学 程序设计语言 经济 哲学 数学分析 运营管理 政治 人工神经网络 语言学
作者
Guanyu Zhu,Yong Zhou,Rui Yao,Hancheng Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 9175-9188 被引量:10
标识
DOI:10.1109/tmm.2023.3248150
摘要

The point cloud is a densely distributed 3D (three-dimensional) data, and annotating the point cloud is a time-consuming and labor-intensive work. The existing semantics segmentation work adopts few-shot learning to reduce the dependence on labeling samples while improving the generalization of the model to new categories. Since point clouds are 3D structures with rich geometric features, even objects of the same category have feature differences that cannot be ignored. Therefore, a few samples (support set) used to train the model do not cover all the features of this category. There is a distribution difference between the support samples and the samples used to verify the model performance (query set). In this paper, we propose an efficient point cloud few-shot segmentation method based on prototypes for bias rectification. A prototype is a vector representation of a category in the metric space. To make the prototype representation of the support set closer to the query set features, we define a feature bias term and reduce the distribution distance between the two sets by fusing the support set features and the bias term. On this basis, we design a feature cross-reference module. By mining the co-occurring features of the support and query sets, it can generate a more representative prototype which captures the overall features of the point cloud. Extensive experiments on two challenging datasets demonstrate that our method outperforms the state-of-the-art method by an average of 3.31 $\%$ in several N-way K-shot tasks, and achieves approximately 200 times faster reasoning speed. Our code is available at https://github.com/964918993/2CBR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
长情的语风完成签到 ,获得积分10
1秒前
Owen应助哈哈采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
豆子发布了新的文献求助10
3秒前
微笑襄完成签到 ,获得积分10
5秒前
JV完成签到,获得积分10
7秒前
何晶晶完成签到 ,获得积分10
7秒前
15987完成签到,获得积分10
8秒前
xxxb2025完成签到,获得积分10
9秒前
10秒前
li完成签到,获得积分10
10秒前
11秒前
朴实迎梅发布了新的文献求助10
11秒前
11秒前
11秒前
Hazelwf发布了新的文献求助10
12秒前
ding应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
13秒前
Hello应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
pcr163应助科研通管家采纳,获得200
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
安晓慧完成签到 ,获得积分10
14秒前
14秒前
WJH应助科研通管家采纳,获得10
14秒前
善学以致用应助踏实依玉采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
吕洺旭应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
哈哈发布了新的文献求助10
15秒前
核桃应助科研通管家采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814