Cross-Class Bias Rectification for Point Cloud Few-Shot Segmentation

点云 计算机科学 特征(语言学) 分割 公制(单位) 特征向量 代表(政治) 人工智能 特征提取 模式识别(心理学) 集合(抽象数据类型) 过度拟合 数据挖掘 一般化 数学 政治学 法学 程序设计语言 经济 哲学 数学分析 运营管理 政治 人工神经网络 语言学
作者
Guanyu Zhu,Yong Zhou,Rui Yao,Hancheng Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 9175-9188 被引量:10
标识
DOI:10.1109/tmm.2023.3248150
摘要

The point cloud is a densely distributed 3D (three-dimensional) data, and annotating the point cloud is a time-consuming and labor-intensive work. The existing semantics segmentation work adopts few-shot learning to reduce the dependence on labeling samples while improving the generalization of the model to new categories. Since point clouds are 3D structures with rich geometric features, even objects of the same category have feature differences that cannot be ignored. Therefore, a few samples (support set) used to train the model do not cover all the features of this category. There is a distribution difference between the support samples and the samples used to verify the model performance (query set). In this paper, we propose an efficient point cloud few-shot segmentation method based on prototypes for bias rectification. A prototype is a vector representation of a category in the metric space. To make the prototype representation of the support set closer to the query set features, we define a feature bias term and reduce the distribution distance between the two sets by fusing the support set features and the bias term. On this basis, we design a feature cross-reference module. By mining the co-occurring features of the support and query sets, it can generate a more representative prototype which captures the overall features of the point cloud. Extensive experiments on two challenging datasets demonstrate that our method outperforms the state-of-the-art method by an average of 3.31 $\%$ in several N-way K-shot tasks, and achieves approximately 200 times faster reasoning speed. Our code is available at https://github.com/964918993/2CBR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称完成签到,获得积分10
1秒前
077发布了新的文献求助10
2秒前
2秒前
赘婿应助熬夜的桃子采纳,获得10
2秒前
bkagyin应助单薄小蜜蜂采纳,获得30
2秒前
3秒前
胡建鹏完成签到 ,获得积分10
3秒前
DMPK完成签到,获得积分10
4秒前
4秒前
4秒前
ljhy发布了新的文献求助10
4秒前
sapphire完成签到,获得积分10
4秒前
脑洞疼应助zsgot3采纳,获得10
4秒前
4秒前
5秒前
trust完成签到,获得积分10
5秒前
彭于晏应助JXY采纳,获得10
5秒前
5秒前
Andrea发布了新的文献求助10
6秒前
6秒前
汉堡包应助申左一采纳,获得30
6秒前
亓大大发布了新的文献求助10
7秒前
NexusExplorer应助爱笑雨竹采纳,获得10
7秒前
7秒前
书瑶完成签到,获得积分10
7秒前
akaMZT完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
思源应助ljhy采纳,获得10
7秒前
索隆发布了新的文献求助10
8秒前
8秒前
8秒前
QQ发布了新的文献求助10
8秒前
夜已深发布了新的文献求助10
9秒前
丘比特应助天真的奎采纳,获得10
9秒前
可靠大神发布了新的文献求助10
9秒前
9秒前
执着千筹发布了新的文献求助10
10秒前
朵朵发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482