清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparing LD50/LC50 Machine Learning Models for Multiple Species

机器学习 计算机科学 集合(抽象数据类型) 人工智能 过程(计算) 程序设计语言 操作系统
作者
Thomas R. Lane,Joshua D. Harris,Fabio Urbina,Sean Ekins
出处
期刊:Journal of Chemical Health and Safety [American Chemical Society]
卷期号:30 (2): 83-97 被引量:11
标识
DOI:10.1021/acs.chas.2c00088
摘要

The lethal dose or concentration which kills 50% of the animals (LD50 or LC50) is an important parameter for scientists to understand the toxicity of chemicals in different scenarios that can be used to make go-no-go decisions, and ultimately assist in the choice of the right personal protective equipment needed for containment. The LD50 assessment process has also required the use of many animals although modern methods have reduced the number of rats needed. Since a compound is usually considered highly toxic when the LD50 is lower than 25 mg/kg, such a classification provides potentially valuable safety information to synthetic chemists and other safety assessment scientists. The need for finding alternative approaches such as computational methods is important to ultimately reduce animal use for this testing further still. We now summarize our efforts to use public data for building in vivo LD50 or LC50 classification and regression machine learning models for various species (rat, mouse, fish, and daphnia) and their fivefold cross-validation statistics with different machine learning algorithms as well as an external curated test set for mouse LD50. These datasets consist of different molecule classes, may cover different activity ranges, and also have a range of dataset sizes. The challenges of using such computational models are that their applicability domain will also need to be understood so that they can be used to make reliable predictions for novel molecules. These machine learning models will also need to be backed up with experimental validation. However, such models could also be used for efforts to bridge gaps in individual toxicity datasets. Making such models available also opens them up to potential misuse or dual use. We will summarize these efforts and propose that they could be used for scoring the millions of commercially available molecules, most of which likely do not have a known LD50 or for that matter any data in vitro or in vivo for toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
4秒前
周周南完成签到 ,获得积分10
4秒前
黑宝坨完成签到 ,获得积分10
7秒前
czj完成签到 ,获得积分10
15秒前
pluto应助hh0采纳,获得10
20秒前
pluto应助hh0采纳,获得10
33秒前
huangzsdy完成签到,获得积分10
40秒前
pluto应助hh0采纳,获得10
1分钟前
pluto应助hh0采纳,获得10
1分钟前
未来可期完成签到,获得积分10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
科研通AI2S应助hh0采纳,获得10
2分钟前
arsenal完成签到 ,获得积分10
2分钟前
pluto应助hh0采纳,获得10
2分钟前
Eri_SCI完成签到 ,获得积分10
2分钟前
yy2023应助hh0采纳,获得10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
美丽依波完成签到 ,获得积分10
2分钟前
俗人应助hh0采纳,获得10
3分钟前
科研通AI2S应助hh0采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
4分钟前
4分钟前
俗人应助hh0采纳,获得10
4分钟前
gwbk完成签到,获得积分10
4分钟前
heisa完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助hh0采纳,获得10
4分钟前
科研通AI2S应助hh0采纳,获得10
4分钟前
房天川完成签到 ,获得积分10
5分钟前
ee_Liu完成签到,获得积分10
5分钟前
科研通AI2S应助hh0采纳,获得10
5分钟前
renpp822发布了新的文献求助10
5分钟前
doreen完成签到 ,获得积分10
5分钟前
vsvsgo完成签到,获得积分10
5分钟前
烟消云散完成签到,获得积分10
5分钟前
pluto应助hh0采纳,获得10
5分钟前
zmuzhang2019完成签到,获得积分10
5分钟前
pluto应助hh0采纳,获得10
5分钟前
科研通AI2S应助hh0采纳,获得10
6分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232922
捐赠科研通 2552338
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769