Performance of ChatGPT on the MCAT: The Road to Personalized and Equitable Premedical Learning

劳动力 医学教育 考试(生物学) 人口 民族 多项选择 代表性不足的少数民族 医学 心理学 政治学 内科学 生物 环境卫生 古生物学 法学 显著性差异
作者
Vikas Bommineni,Sanaea Bhagwagar,Daniel Balcarcel,Christos Davatzikos,Donald Boyer
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:31
标识
DOI:10.1101/2023.03.05.23286533
摘要

ABSTRACT Despite an increasingly diverse population, an unmet demand for undergraduates from underrepresented racial and ethnic minority (URM) backgrounds exists in the field of medicine as a result of financial hurdles and insufficient educational support faced by URM students in the premedical journey. With the capacity to provide highly individualized and accessible no- or low-cost dynamic instruction, large language models (LLMs) and their chatbot derivatives are posed to change this dynamic and subsequently help shape a more diverse future physician workforce. While studies have established the passing performance and insightful explanations of one of the most accurate LLM-powered chatbots to date—Chat Generative Pre-trained Transformer (ChatGPT)—on standardized exams such as medical licensing exams, the role of ChatGPT in premedical education remains unknown. We evaluated the performance of ChatGPT on the Medical College Admission Test (MCAT), a standardized 230-question multiple choice exam that assesses a broad range of competencies in the natural, physical, social, and behavioral sciences as well as critical analysis and reasoning. Depending on its visual item response strategy, ChatGPT performed at or above the median performance of 276,779 student test takers on the MCAT. Additionally, ChatGPT-generated answers demonstrated both a high level of agreement with the official answer key as well as insight into its explanations. Based on these promising results, we anticipate two primary applications of ChatGPT and future LLM iterations in premedical education: firstly, such models could provide free or low-cost access to personalized and insightful explanations of MCAT competency-related questions to help students from all socioeconomic and URM backgrounds. Secondly, these models could be used to generate additional test questions by test-makers or for targeted preparation by pre-medical students. These applications of ChatGPT in premedical education could be an invaluable, innovative path forward to increase diversity and improve equity among premedical students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
strings完成签到,获得积分10
1秒前
秀丽的初柔完成签到,获得积分10
3秒前
xzc完成签到,获得积分10
3秒前
strings发布了新的文献求助10
5秒前
5秒前
蛰伏的小宇宙完成签到,获得积分10
7秒前
科研通AI2S应助科研小白采纳,获得10
8秒前
8秒前
UU完成签到 ,获得积分10
9秒前
沉静的翅膀完成签到 ,获得积分10
9秒前
9秒前
火星完成签到 ,获得积分10
10秒前
12秒前
归途发布了新的文献求助10
12秒前
清爽聋五发布了新的文献求助10
14秒前
成就白秋发布了新的文献求助10
14秒前
猪猪女孩发布了新的文献求助10
15秒前
orixero应助芝芝采纳,获得10
15秒前
包容东蒽完成签到 ,获得积分10
18秒前
18秒前
归途完成签到,获得积分20
19秒前
可爱的函函应助Lyn采纳,获得30
20秒前
21秒前
22秒前
zhangxin发布了新的文献求助10
23秒前
执着的从阳完成签到,获得积分10
25秒前
科研小白发布了新的文献求助10
26秒前
老李完成签到,获得积分10
27秒前
Lorain完成签到,获得积分10
27秒前
Littlerain~完成签到,获得积分10
28秒前
Ann发布了新的文献求助10
28秒前
JamesPei应助猪猪女孩采纳,获得10
30秒前
小全完成签到,获得积分10
30秒前
31秒前
微笑高山完成签到 ,获得积分10
31秒前
晨曦发布了新的文献求助10
32秒前
33秒前
传奇3应助AeroY采纳,获得10
33秒前
科研小白完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023