Identifying treatment heterogeneity in atrial fibrillation using a novel causal machine learning method

医学 拜瑞妥 阿哌沙班 达比加群 心房颤动 华法林 内科学 冲程(发动机) 队列 维生素K拮抗剂 人口 心脏病学 机械工程 环境卫生 工程类
作者
Che Ngufor,Xiaoxi Yao,Jonathan Inselman,Joseph S. Ross,Sanket S. Dhruva,David J. Graham,Joo-Yeon Lee,Konstantinos C. Siontis,Nihar R. Desai,Eric C. Polley,Nilay D. Shah,Peter A. Noseworthy
出处
期刊:American Heart Journal [Elsevier]
卷期号:260: 124-140 被引量:1
标识
DOI:10.1016/j.ahj.2023.02.015
摘要

Lifelong oral anticoagulation is recommended in patients with atrial fibrillation (AF) to prevent stroke. Over the last decade, multiple new oral anticoagulants (OACs) have expanded the number of treatment options for these patients. While population-level effectiveness of OACs has been compared, it is unclear if there is variability in benefit and risk across patient subgroups.We analyzed claims and medical data for 34,569 patients who initiated a nonvitamin K antagonist oral anticoagulant (non-vitamin K antagonist oral anticoagulant (NOAC); apixaban, dabigatran, and rivaroxaban) or warfarin for nonvalvular AF between 08/01/2010 and 11/29/2017 from the OptumLabs Data Warehouse. A machine learning (ML) method was applied to match different OAC groups on several baseline variables including, age, sex, race, renal function, and CHA2DS2 -VASC score. A causal ML method was then used to discover patient subgroups characterizing the head-to-head treatment effects of the OACs on a primary composite outcome of ischemic stroke, intracranial hemorrhage, and all-cause mortality.The mean age, number of females and white race in the entire cohort of 34,569 patients were 71.2 (SD, 10.7) years, 14,916 (43.1%), and 25,051 (72.5%) respectively. During a mean follow-up of 8.3 (SD, 9.0) months, 2,110 (6.1%) of patients experienced the composite outcome, of whom 1,675 (4.8%) died. The causal ML method identified 5 subgroups with variables favoring apixaban over dabigatran; 2 subgroups favoring apixaban over rivaroxaban; 1 subgroup favoring dabigatran over rivaroxaban; and 1 subgroup favoring rivaroxaban over dabigatran in terms of risk reduction of the primary endpoint. No subgroup favored warfarin and most dabigatran vs warfarin users favored neither drug. The variables that most influenced favoring one subgroup over another included Age, history of ischemic stroke, thromboembolism, estimated glomerular filtration rate, Race, and myocardial infarction.Among patients with AF treated with a NOAC or warfarin, a causal ML method identified patient subgroups with differences in outcomes associated with OAC use. The findings suggest that the effects of OACs are heterogeneous across subgroups of AF patients, which could help personalize the choice of OAC. Future prospective studies are needed to better understand the clinical impact of the subgroups with respect to OAC selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要毕业完成签到 ,获得积分10
1秒前
starofjlu应助是小曹啊采纳,获得20
3秒前
Arthur发布了新的文献求助10
7秒前
8秒前
彭于晏应助寒冷的曼易采纳,获得10
9秒前
12秒前
14秒前
17秒前
咯噔完成签到,获得积分10
17秒前
RRROP发布了新的文献求助10
20秒前
找回自己完成签到,获得积分10
21秒前
甜蜜的笑白完成签到,获得积分10
21秒前
棠梨煎雪完成签到,获得积分10
21秒前
22秒前
小周完成签到,获得积分20
24秒前
自觉南风发布了新的文献求助10
24秒前
29秒前
30秒前
天天快乐应助干羞花采纳,获得10
33秒前
科研通AI2S应助RRROP采纳,获得10
34秒前
李爱国应助细心以旋采纳,获得10
35秒前
zhangxinan完成签到,获得积分10
35秒前
诸苑博给诸苑博的求助进行了留言
36秒前
小二郎应助勤奋的南子采纳,获得10
38秒前
北三十发布了新的文献求助10
40秒前
mmyhn应助可靠的寒风采纳,获得20
40秒前
快乐茗完成签到,获得积分10
41秒前
张文博完成签到,获得积分10
43秒前
45秒前
细心以旋完成签到,获得积分20
47秒前
科研通AI2S应助大旭采纳,获得10
48秒前
不说话的不倒翁完成签到 ,获得积分10
49秒前
君知完成签到,获得积分10
51秒前
细心以旋发布了新的文献求助10
52秒前
乐乐完成签到,获得积分10
52秒前
十公里发布了新的文献求助10
54秒前
56秒前
honghong完成签到 ,获得积分10
57秒前
58秒前
吉吉国王完成签到 ,获得积分10
59秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151970
求助须知:如何正确求助?哪些是违规求助? 2803266
关于积分的说明 7852878
捐赠科研通 2460679
什么是DOI,文献DOI怎么找? 1309983
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760