Diffusion-Weighted Imaging as a Quantitative Imaging Biomarker for Predicting Proliferation Rate in Hepatocellular Carcinoma: Developing a Radiomics Nomogram

医学 列线图 肝细胞癌 有效扩散系数 磁共振弥散成像 无线电技术 生物标志物 成像生物标志物 磁共振成像 曲线下面积 核医学 放射科 回顾性队列研究 肿瘤科 病理 内科学 化学 生物化学
作者
Guangdong Bai,Zewen Han,Xiaojie Chen,Lanmei Gao,Rongping Ye,Yueming Li
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (4): 539-547 被引量:1
标识
DOI:10.1097/rct.0000000000001448
摘要

Purpose This study aimed to explore the predictive performance of diffusion-weighted imaging with apparent diffusion coefficient map in predicting the proliferation rate of hepatocellular carcinoma and to develop a radiomics-based nomogram. Methods This was a single-center retrospective study. A total of 110 patients were enrolled. The sample included 38 patients with low Ki67 expression (Ki67 ≤10%) and 72 with high Ki67 expression (Ki67 >10%) as demonstrated by surgical pathology. Patients were randomly divided into either a training (n = 77) or validation (n = 33) cohort. Diffusion-weighted imaging with apparent diffusion coefficient maps was used to extract radiomic features and the signal intensity values of tumor (SI tumor ), normal liver (SI liver ), and background noise (SI background ) from all samples. Subsequently, the clinical model, radiomic model, and fusion model (with clinical data and radiomic signature) were developed and validated. Results The area under the curve (AUC) of the clinical model for predicting the Ki67 expression including serum α-fetoprotein level ( P = 0.010), age ( P = 0.015), and signal noise ratio ( P = 0.026) was 0.799 and 0.715 in training and validation cohorts, respectively. The AUC of the radiomic model constructed by 9 selected radiomic features was 0.833 and 0.772 in training and validation cohorts, respectively. The AUC of the fusion model containing serum α-fetoprotein level ( P = 0.011), age ( P = 0.019), and rad score ( P < 0.001) was 0.901 and 0.781 in training and validation cohorts, respectively. Conclusions Diffusion-weighted imaging as a quantitative imaging biomarker can predict Ki67 expression level in hepatocellular carcinoma across various models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适文献完成签到,获得积分10
1秒前
CipherSage应助有魅力的电脑采纳,获得10
2秒前
妮可粒子完成签到,获得积分10
2秒前
4秒前
ck发布了新的文献求助10
4秒前
斯文败类应助橘子采纳,获得10
5秒前
HIBARRA发布了新的文献求助10
6秒前
ck完成签到,获得积分10
11秒前
11秒前
ding应助fighting采纳,获得10
11秒前
小土豆完成签到,获得积分10
14秒前
14秒前
Jasper应助nalan采纳,获得10
14秒前
共享精神应助wyk采纳,获得10
15秒前
15秒前
Dharma_Bums完成签到,获得积分10
16秒前
17秒前
中中会发光完成签到,获得积分10
19秒前
19秒前
20秒前
不太懂发布了新的文献求助10
21秒前
22秒前
tuanzi发布了新的文献求助10
22秒前
隐形曼青应助pp0118采纳,获得10
22秒前
24秒前
zsy发布了新的文献求助10
25秒前
25秒前
小h完成签到,获得积分10
26秒前
林菲菲完成签到,获得积分10
26秒前
Cheng发布了新的文献求助10
28秒前
桐桐应助RNAPW采纳,获得10
28秒前
29秒前
31秒前
王则前发布了新的文献求助10
35秒前
果果完成签到 ,获得积分10
37秒前
39秒前
39秒前
40秒前
Dado完成签到,获得积分10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589