On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Taylor & Francis]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凌代萱完成签到 ,获得积分10
刚刚
1秒前
1秒前
mmm完成签到,获得积分20
4秒前
powell应助喜喵喵采纳,获得10
5秒前
高手发布了新的文献求助10
5秒前
6秒前
gsq发布了新的文献求助30
7秒前
8秒前
香蕉妙菱发布了新的文献求助10
9秒前
深情安青应助wwwstt采纳,获得10
10秒前
易酰水烊酸应助苏苏采纳,获得10
11秒前
11秒前
12秒前
英姑应助小刘采纳,获得10
12秒前
李彪发布了新的文献求助30
12秒前
开心每一天完成签到 ,获得积分10
13秒前
星辰大海应助高手采纳,获得10
13秒前
温柔的姿完成签到,获得积分10
14秒前
传奇3应助gj采纳,获得10
19秒前
XYX关闭了XYX文献求助
27秒前
曲奇吐司完成签到,获得积分10
31秒前
FashionBoy应助Sijie采纳,获得10
33秒前
dong应助夏木夏采纳,获得10
34秒前
美好二娘完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
唐慢慢发布了新的文献求助10
38秒前
ding应助猪猪hero采纳,获得10
38秒前
朴素若枫完成签到,获得积分10
39秒前
苏孖完成签到,获得积分10
41秒前
43秒前
44秒前
t团子完成签到,获得积分10
44秒前
潇湘雪月发布了新的文献求助10
45秒前
一枚小豆完成签到,获得积分10
47秒前
hahahah完成签到,获得积分10
48秒前
坦率耳机应助朴素若枫采纳,获得10
49秒前
wucl1990发布了新的文献求助10
49秒前
科研通AI5应助CSPC001采纳,获得10
49秒前
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136