亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Informa]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
15秒前
殷桃瑞发布了新的文献求助10
16秒前
17秒前
CipherSage应助帅气的熊猫采纳,获得10
19秒前
踏实白柏发布了新的文献求助10
21秒前
任性天晴完成签到,获得积分10
22秒前
殷桃瑞完成签到,获得积分10
28秒前
无极微光应助任性天晴采纳,获得20
28秒前
39秒前
39秒前
顾矜应助科研通管家采纳,获得10
41秒前
魏欣娜发布了新的文献求助10
45秒前
123发布了新的文献求助10
46秒前
大饼完成签到 ,获得积分10
52秒前
qiii发布了新的文献求助10
59秒前
JamesPei应助魏欣娜采纳,获得10
1分钟前
研友_VZG7GZ应助orangel采纳,获得10
1分钟前
1分钟前
金沐栋发布了新的文献求助10
1分钟前
1分钟前
Rachel发布了新的文献求助10
1分钟前
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
orixero应助契合采纳,获得20
2分钟前
2分钟前
Lucas应助潇洒荧荧采纳,获得10
2分钟前
契合发布了新的文献求助20
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
CodeCraft应助魏欣娜采纳,获得10
2分钟前
2分钟前
2分钟前
隐形曼青应助踏实白柏采纳,获得10
3分钟前
研友_VZG7GZ应助契合采纳,获得20
3分钟前
大个应助淡然的念珍采纳,获得10
3分钟前
夹心就是嘉欣呀完成签到,获得积分10
3分钟前
3分钟前
今后应助夹心就是嘉欣呀采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177