亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Taylor & Francis]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的自行车完成签到,获得积分20
22秒前
Akim应助科研通管家采纳,获得10
27秒前
我睡觉不会困12138完成签到 ,获得积分10
48秒前
脑洞疼应助xiongdi521采纳,获得10
56秒前
阿泽完成签到 ,获得积分10
1分钟前
疯狂的自行车关注了科研通微信公众号
1分钟前
kohu完成签到,获得积分10
1分钟前
1分钟前
kohu发布了新的文献求助10
1分钟前
1分钟前
正直的松鼠完成签到 ,获得积分10
2分钟前
核桃发布了新的文献求助10
2分钟前
Xw关闭了Xw文献求助
3分钟前
3分钟前
Xw关闭了Xw文献求助
3分钟前
3分钟前
Swear完成签到 ,获得积分10
3分钟前
勤恳冰淇淋完成签到 ,获得积分10
3分钟前
3分钟前
El发布了新的文献求助10
3分钟前
4分钟前
李健应助El采纳,获得10
4分钟前
义气雁完成签到 ,获得积分10
4分钟前
4分钟前
xiongdi521发布了新的文献求助10
4分钟前
美罗培南完成签到 ,获得积分10
4分钟前
lige完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
二十四桥完成签到 ,获得积分10
5分钟前
直觉应助背后的鞋垫采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
Akim应助Borhan采纳,获得10
5分钟前
5分钟前
jjjjj发布了新的文献求助10
5分钟前
Liiiiiiiiii发布了新的文献求助10
5分钟前
Eva完成签到 ,获得积分10
6分钟前
上官若男应助Liiiiiiiiii采纳,获得10
6分钟前
Liufgui应助jjjjj采纳,获得10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990075
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256369
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228