On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Informa]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lirongcas发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
3秒前
qzj发布了新的文献求助10
4秒前
脑洞疼应助诸松采纳,获得20
5秒前
5秒前
科研通AI5应助Joan7788采纳,获得10
5秒前
赘婿应助谷谷采纳,获得10
5秒前
6秒前
zsh发布了新的文献求助10
6秒前
6秒前
MM完成签到,获得积分10
7秒前
涛ya完成签到,获得积分10
8秒前
9秒前
笛卡尔完成签到,获得积分10
9秒前
xxy完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
传奇3应助幸福采纳,获得10
11秒前
科研通AI5应助伶俐安萱采纳,获得10
12秒前
科研通AI5应助独特的莫言采纳,获得10
12秒前
ljys发布了新的文献求助10
13秒前
kkkk发布了新的文献求助20
13秒前
15秒前
张某人的科研求助完成签到,获得积分20
15秒前
Hongcheng完成签到,获得积分10
16秒前
Orange应助辣辣采纳,获得10
16秒前
16秒前
zsh完成签到,获得积分10
17秒前
fool完成签到,获得积分10
17秒前
Cumin完成签到 ,获得积分10
18秒前
Castiron发布了新的文献求助10
18秒前
18秒前
19秒前
Lululu关注了科研通微信公众号
19秒前
19秒前
爱学习的源儿完成签到,获得积分10
20秒前
christine完成签到,获得积分10
20秒前
2233qq完成签到,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952