On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Informa]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
kylin发布了新的文献求助10
刚刚
1秒前
辣子鱼完成签到,获得积分10
1秒前
orixero应助super采纳,获得10
1秒前
2秒前
web123完成签到,获得积分10
2秒前
2秒前
典雅涵瑶完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
威武灵阳完成签到,获得积分10
4秒前
王海祥完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助gao采纳,获得10
4秒前
yolanda_ji完成签到,获得积分10
4秒前
和谐以冬完成签到 ,获得积分10
5秒前
陆崧瀚发布了新的文献求助10
6秒前
6秒前
nalaaaa发布了新的文献求助30
6秒前
小先生发布了新的文献求助10
7秒前
打打应助liang采纳,获得10
7秒前
彭于晏应助健壮洋葱采纳,获得10
8秒前
8秒前
石烟祝完成签到,获得积分10
9秒前
Jasper应助nianlu采纳,获得10
10秒前
科研通AI6应助昏睡的觅露采纳,获得10
10秒前
lpk发布了新的文献求助10
10秒前
NexusExplorer应助FYA采纳,获得10
11秒前
11秒前
12秒前
大方海燕发布了新的文献求助10
12秒前
哒丝萌德完成签到,获得积分10
12秒前
Shu舒完成签到,获得积分10
12秒前
充电宝应助dachang采纳,获得10
13秒前
Dawn_ZZZ给Dawn_ZZZ的求助进行了留言
13秒前
shhoing应助孔雀吃披萨采纳,获得10
14秒前
田様应助zxm采纳,获得10
14秒前
super发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556