On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Informa]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风衣拖地发布了新的文献求助10
刚刚
2秒前
cccccckp发布了新的文献求助10
2秒前
2秒前
哐哧哐哧薯完成签到 ,获得积分10
3秒前
时势造英雄完成签到 ,获得积分10
4秒前
栗荔完成签到 ,获得积分10
4秒前
paramecium完成签到,获得积分10
4秒前
小蘑菇应助称心访文采纳,获得10
5秒前
彪壮的砖家完成签到,获得积分10
5秒前
秦善斓完成签到,获得积分10
6秒前
科研通AI6应助kids采纳,获得30
6秒前
7秒前
酷波er应助萧萧落木天采纳,获得10
7秒前
8秒前
Flex完成签到,获得积分10
9秒前
freyaaaaa完成签到,获得积分0
10秒前
酷波er应助田国兵采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Yiy完成签到 ,获得积分0
11秒前
11秒前
Sss发布了新的文献求助10
11秒前
斯文败类应助李老师采纳,获得30
11秒前
12秒前
ZDD完成签到,获得积分10
13秒前
田yg发布了新的文献求助10
13秒前
尼克发布了新的文献求助10
14秒前
可乐鸡翅发布了新的文献求助10
14秒前
天天快乐应助流星噬月采纳,获得10
15秒前
16秒前
16秒前
贤惠的翰完成签到 ,获得积分10
17秒前
18秒前
轻松梦芝完成签到,获得积分10
18秒前
18秒前
18秒前
田国兵发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265