On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Taylor & Francis]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助董啊采纳,获得10
刚刚
魔力巴啦啦完成签到 ,获得积分10
1秒前
自信雅琴发布了新的文献求助20
1秒前
1秒前
许鑫蓁完成签到 ,获得积分10
1秒前
lulu加油完成签到,获得积分10
2秒前
2秒前
xiangrikui发布了新的文献求助10
2秒前
牛马完成签到 ,获得积分10
3秒前
科研通AI5应助WJH采纳,获得10
4秒前
Zard发布了新的文献求助10
4秒前
王冉冉完成签到,获得积分10
5秒前
ryan1300完成签到 ,获得积分10
5秒前
易拉罐完成签到,获得积分10
5秒前
ZQ完成签到,获得积分10
5秒前
yyds完成签到,获得积分20
5秒前
5秒前
6秒前
彭于晏应助刘宇采纳,获得10
6秒前
7秒前
leeom发布了新的文献求助10
9秒前
Timo干物类完成签到,获得积分10
9秒前
北冥有鱼给北冥有鱼的求助进行了留言
9秒前
9秒前
王冉冉发布了新的文献求助30
9秒前
Ava应助易拉罐采纳,获得10
10秒前
隐形曼青应助无心的土豆采纳,获得10
10秒前
乐于助人大好人完成签到 ,获得积分10
10秒前
ZZQ完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
Lina HE完成签到 ,获得积分10
14秒前
852应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
15秒前
ED应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
Akim应助科研通管家采纳,获得10
15秒前
进步完成签到,获得积分10
15秒前
852应助科研通管家采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048