On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Informa]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过的翎应助ZJX1947采纳,获得10
刚刚
1秒前
Lucas应助Allein采纳,获得10
1秒前
依依完成签到 ,获得积分10
1秒前
yangbinsci0827完成签到,获得积分10
2秒前
星辰大海应助wuran采纳,获得10
2秒前
2秒前
深情冬云应助redflower采纳,获得10
2秒前
LHL发布了新的文献求助10
2秒前
大模型应助BAOYu采纳,获得10
2秒前
共享精神应助yewungs采纳,获得10
2秒前
淦淦完成签到 ,获得积分10
3秒前
独特的忆彤完成签到 ,获得积分10
3秒前
3秒前
LI完成签到,获得积分10
3秒前
赵静1234567890完成签到,获得积分10
3秒前
共享精神应助LLM采纳,获得10
3秒前
4秒前
孟佳完成签到 ,获得积分10
4秒前
大胆飞荷完成签到,获得积分10
4秒前
落后的听双完成签到,获得积分10
5秒前
5秒前
death123517完成签到,获得积分10
6秒前
淦淦关注了科研通微信公众号
6秒前
熙可檬发布了新的文献求助10
7秒前
7秒前
我师傅不是好人完成签到,获得积分10
7秒前
7秒前
zjw1997发布了新的文献求助30
8秒前
大个应助superming采纳,获得10
8秒前
完美羿完成签到,获得积分10
8秒前
8秒前
duwang完成签到,获得积分10
9秒前
9秒前
鄙视注册完成签到,获得积分0
9秒前
风华发布了新的文献求助10
9秒前
9秒前
10秒前
Robin发布了新的文献求助10
10秒前
现代半山完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320