亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Informa]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果发布了新的文献求助10
2秒前
Haoru应助Captain采纳,获得30
2秒前
酷波er应助遇晚采纳,获得10
5秒前
夜夏完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
18秒前
绝望的大学生完成签到,获得积分20
18秒前
20秒前
boom完成签到 ,获得积分10
22秒前
23秒前
wwww完成签到 ,获得积分0
23秒前
23秒前
cwj完成签到,获得积分10
24秒前
Vince发布了新的文献求助10
27秒前
wangran_778发布了新的文献求助10
29秒前
35秒前
doctor_quyi发布了新的文献求助10
38秒前
wangran_778完成签到,获得积分10
40秒前
42秒前
43秒前
李义志完成签到,获得积分10
46秒前
46秒前
佳佳发布了新的文献求助10
46秒前
啊哦发布了新的文献求助30
47秒前
今后应助李义志采纳,获得10
49秒前
科研通AI6应助黄黄黄采纳,获得10
49秒前
无极微光应助缓慢的藏鸟采纳,获得20
50秒前
贱小贱完成签到,获得积分10
50秒前
ZYP发布了新的文献求助10
53秒前
科研狗完成签到 ,获得积分10
54秒前
无花果应助好了没了采纳,获得10
54秒前
科研通AI6应助啊哦采纳,获得30
59秒前
黎娅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
好了没了完成签到,获得积分10
1分钟前
挚智完成签到 ,获得积分10
1分钟前
1分钟前
好了没了发布了新的文献求助10
1分钟前
lele完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264