On-Line Fault Identification, Location, and Seamless Service Restoration using Transfer Learning-Based Convolution Neural Network for Low-Voltage DC Microgrid

微电网 过度拟合 计算机科学 断层(地质) 卷积神经网络 故障检测与隔离 人工神经网络 卷积(计算机科学) 实时计算 人工智能 控制(管理) 地质学 地震学 执行机构
作者
V. Shanmugapriya,S. Vidyasagar
出处
期刊:Electric Power Components and Systems [Taylor & Francis]
卷期号:51 (8): 785-808 被引量:8
标识
DOI:10.1080/15325008.2023.2183997
摘要

DC microgrid over the last decade has gained a global paradigm in the power system field. Through the effective integration of distributed energy resources, significant researchers have improved its advantages over conventional power systems. The new state-of-the-art infrastructure despite its numerous advantages possess challenges in implementing an appropriate protection system. Impact of selecting a definite threshold for voltage and current compromises with the accuracy and speed of detection in conventional fault detection methods. Although many machine learning methods are successful in fault detection and classification for DC microgrid they still suffer from overfitting problems and exhaustively time-consuming. This article intends to provide an Online fault protection method for a LVDC microgrid system based on a transfer learning-based convolution neural network (TCNN). With the help of transient voltages and currents at different buses, image data for faults at different buses serves as input to the convolution neural network layer. First, the pre-trained Alex-Net CNN initializes the weights and biases for the targeted offline CNN's. Secondly, the transferred layers from the offline CNN's, initializes the online convolution neural network for real-time fault detection and classification. This work aims to accurately identify and locate the faults without complex dataset and multiple thresholds while improving accuracy of fault detection and classification. To ensure reliability of the system the recognized faulty bus reconnects to the healthy bus via sectionalizing circuit breakers through the detected signals. The proposed TCNN framework has an accuracy of 99.78%. The proposed method results when compared with state-of-the-art machine learning techniques such as SVM, LSTM, RNN, multilayer perceptron, and wavelet-based ANN showed better results in terms of accuracy and has significantly reduced data abundance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨三多完成签到,获得积分10
刚刚
刚刚
点金石发布了新的文献求助10
刚刚
刚刚
hlh1996完成签到,获得积分10
1秒前
DQ8733发布了新的文献求助10
1秒前
好多西红柿呀完成签到,获得积分10
2秒前
星辰大海应助GG采纳,获得10
2秒前
2秒前
鲜榨白开水完成签到,获得积分10
3秒前
3秒前
噗噗发布了新的文献求助30
3秒前
优美的跳跳糖完成签到 ,获得积分10
4秒前
4秒前
研友_LB3vXn完成签到,获得积分20
5秒前
believe完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
popcorn完成签到 ,获得积分10
8秒前
cc发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
酷波er应助点金石采纳,获得10
10秒前
10秒前
斜对角的苍白完成签到,获得积分10
10秒前
晚来客应助Assassion采纳,获得10
10秒前
GG完成签到,获得积分10
11秒前
小二郎应助终醒采纳,获得10
11秒前
11秒前
11秒前
明月发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
tennisgirl发布了新的文献求助50
15秒前
semigreen发布了新的文献求助10
16秒前
完美世界应助鲜榨白开水采纳,获得10
16秒前
齐天完成签到 ,获得积分10
16秒前
SciGPT应助自由的馒头采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096