A two-stage stochastic model for intermodal terminal location and freight distribution under facility disruptions

随机规划 持续时间(音乐) 设施选址问题 聚类分析 计算机科学 运筹学 集合(抽象数据类型) 灵敏度(控制系统) 终端(电信) 分解 数学优化 工程类 数学 生物 电信 机器学习 文学类 电子工程 艺术 生态学 程序设计语言
作者
Vishal Badyal,William G. Ferrell,Nathan Huynh,Bhavya Padmanabhan
出处
期刊:International Journal of Systems Science: Operations & Logistics [Informa]
卷期号:10 (1) 被引量:3
标识
DOI:10.1080/23302674.2023.2169055
摘要

A two-stage stochastic model is developed for intermodal facility location and freight distribution under random disruptions at shipper facilities and/or intermodal terminals (IMTs). The magnitude of the disruption and the impacted locations are uncertain parameters. A two-stage stochastic programming model is used to address supply uncertainty at shippers and throughput capacity uncertainty at IMTs. A level-method based decomposition approach and the L-shaped method are used to solve the model. The state of South Carolina in the U.S.A. is used as a case study with the goal of determining the set of IMT locations that minimise the total long-run network costs due to hurricane disruptions. A methodology is developed to generate realistic scenarios. The Freight Analysis Framework Version 4.5 data set is used to generate demands and supply, and k-means clustering is used with the Hurricane database (HURDAT2) to generate hurricane disruption scenarios. Sensitivity analyses are performed by varying the disruption probabilities, disruption duration, and direct shipping cost parameters. The results indicate that as disruptions increase, less disrupted intermodal facilities are opened. Also, as direct shipping costs increase, the long-term savings increase non-linearly for all magnitudes of disruptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song24517发布了新的文献求助20
刚刚
顺利琦完成签到,获得积分10
1秒前
李子发布了新的文献求助10
1秒前
pbf完成签到,获得积分10
1秒前
1秒前
lyn发布了新的文献求助30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Twikky完成签到,获得积分10
1秒前
柚子皮应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Akim应助夏末采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
迟大猫应助想学习采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
3秒前
期刊应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
最卷的卷心菜完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得50
3秒前
田様应助科研通管家采纳,获得100
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
yun尘世应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
知性的映之完成签到,获得积分10
4秒前
4秒前
小蘑菇应助圈圈采纳,获得10
4秒前
万能图书馆应助七块采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678