脱卤球绦虫
戒毒(替代医学)
化学
1,2-二氯乙烷
乙烯
生物
生物化学
医学
有机化学
病理
催化作用
替代医学
氯乙烯
共聚物
聚合物
作者
Zhiming Wu,Xin Yu,Guiping Liu,Wěi Li,Lianghua Lu,Pengfa Li,Xihui Xu,Jian‐Dong Jiang,Baozhan Wang,Wenjing Qiao
标识
DOI:10.1016/j.envpol.2023.121443
摘要
1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 μM d−1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL−1 culture to 4.07 ± 2.45 × 108 copies∙mL−1 culture after dechlorinating 110.69 ± 30.61 μmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per μmol Cl− released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.
科研通智能强力驱动
Strongly Powered by AbleSci AI