A critical review on odor measurement and prediction

气味 计算机科学 人工智能 化学 有机化学
作者
Yujing Wang,Liming Shao,Xinyue Kang,Hua Zhang,Fan Lü,Pinjing He
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:336: 117651-117651 被引量:22
标识
DOI:10.1016/j.jenvman.2023.117651
摘要

Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinxuan应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
良辰应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
2秒前
小新爱看文献完成签到,获得积分10
2秒前
dsgfsdfg发布了新的文献求助10
3秒前
dream发布了新的文献求助10
4秒前
real发布了新的文献求助10
4秒前
4秒前
4秒前
kkkkkoi发布了新的文献求助10
5秒前
Urusaiina完成签到,获得积分10
5秒前
云枝完成签到,获得积分10
7秒前
王哥完成签到 ,获得积分10
8秒前
8秒前
心已死何来心完成签到,获得积分10
8秒前
van发布了新的文献求助10
9秒前
9秒前
07应助Light采纳,获得30
9秒前
失眠鸭完成签到,获得积分10
11秒前
Run完成签到,获得积分10
11秒前
善学以致用应助晁子枫采纳,获得10
11秒前
笨笨猪完成签到,获得积分10
11秒前
12秒前
夏虫不可语冰完成签到,获得积分10
12秒前
小海应助W-w采纳,获得10
13秒前
13秒前
adastra完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
NexusExplorer应助TaDLove采纳,获得10
13秒前
格格巫发布了新的文献求助10
14秒前
NexusExplorer应助懵懂的映雁采纳,获得10
14秒前
脑壳疼发布了新的文献求助10
14秒前
z3Q应助amumu采纳,获得10
14秒前
Afei发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305838
求助须知:如何正确求助?哪些是违规求助? 2939636
关于积分的说明 8494019
捐赠科研通 2613958
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663191
邀请新用户注册赠送积分活动 647988