A critical review on odor measurement and prediction

气味 计算机科学 人工智能 化学 有机化学
作者
Yujing Wang,Liming Shao,Xinyue Kang,Hua Zhang,Fan Lü,Pinjing He
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:336: 117651-117651 被引量:36
标识
DOI:10.1016/j.jenvman.2023.117651
摘要

Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HanZhang发布了新的文献求助10
1秒前
2秒前
等风等你发布了新的文献求助10
2秒前
小田完成签到,获得积分10
2秒前
李健应助lxt采纳,获得10
2秒前
3秒前
娇娇完成签到 ,获得积分10
3秒前
3秒前
李健的小迷弟应助kiki采纳,获得10
4秒前
高高行云发布了新的文献求助10
6秒前
6秒前
owllll应助Inspiring采纳,获得10
6秒前
7秒前
情怀应助army77采纳,获得10
7秒前
内向宛凝发布了新的文献求助10
7秒前
7秒前
阿狸发布了新的文献求助10
8秒前
KSDalton完成签到,获得积分10
8秒前
Pan完成签到 ,获得积分10
8秒前
科研通AI6应助AA采纳,获得10
9秒前
Jasper应助bububusbu采纳,获得10
9秒前
万能图书馆应助等风等你采纳,获得10
9秒前
852应助辛欣采纳,获得10
9秒前
Werido完成签到 ,获得积分10
10秒前
11秒前
李健的小迷弟应助行者采纳,获得10
11秒前
Linkingrains发布了新的文献求助10
12秒前
喻修杰发布了新的文献求助10
12秒前
14秒前
14秒前
16秒前
captainHc发布了新的文献求助10
16秒前
16秒前
Linkingrains完成签到,获得积分20
17秒前
kiki发布了新的文献求助10
17秒前
喻修杰完成签到,获得积分10
18秒前
18秒前
赘婿应助小小采纳,获得10
18秒前
Passer发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480809
求助须知:如何正确求助?哪些是违规求助? 4581983
关于积分的说明 14382905
捐赠科研通 4510577
什么是DOI,文献DOI怎么找? 2471918
邀请新用户注册赠送积分活动 1458281
关于科研通互助平台的介绍 1431940