Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction

计算机科学 图形 等变映射 人工神经网络 理论计算机科学 拓扑(电路) 人工智能 算法 数学 组合数学 纯数学
作者
Yiqiang Yi,Xu Wan,Kangfei Zhao,Le Ou-Yang,Peilin Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4336-4347
标识
DOI:10.1109/jbhi.2024.3383245
摘要

Binding affinity prediction of three-dimensional (3D) protein-ligand complexes is critical for drug repositioning and virtual drug screening. Existing approaches usually transform a 3D protein-ligand complex to a two-dimensional (2D) graph, and then use graph neural networks (GNNs) to predict its binding affinity. However, the node and edge features of the 2D graph are extracted based on invariant local coordinate systems of the 3D complex. As a result, these approaches can not fully learn the global information of the complex, such as the physical symmetry and the topological information of bonds. To address these issues, we propose a novel Equivariant Line Graph Network (ELGN) for binding affinity prediction of 3D protein-ligand complexes. The proposed ELGN firstly adds a super node to the 3D complex, and then builds a line graph based on the 3D complex. After that, ELGN uses a new E(3)-equivariant network layer to pass the messages between nodes and edges based on the global coordinate system of the 3D complex. Experimental results on two real datasets demonstrate the effectiveness of ELGN over several state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼儿乐园完成签到 ,获得积分10
1秒前
2秒前
羊咩咩发布了新的文献求助10
3秒前
4秒前
Owen应助超帅连虎采纳,获得30
9秒前
NexusExplorer应助超帅连虎采纳,获得30
9秒前
9秒前
ZYQ完成签到 ,获得积分10
9秒前
ttzziy完成签到 ,获得积分10
10秒前
XM发布了新的文献求助10
10秒前
10秒前
12秒前
jiu完成签到,获得积分10
14秒前
seventonight2完成签到,获得积分10
15秒前
15秒前
NexusExplorer应助Hanmos3624采纳,获得10
18秒前
XM完成签到,获得积分10
18秒前
xdmhv完成签到 ,获得积分10
19秒前
缥缈的冰旋完成签到,获得积分10
20秒前
SciGPT应助Sience采纳,获得10
20秒前
仁爱一德发布了新的文献求助10
21秒前
WD完成签到,获得积分10
21秒前
桐桐应助梧桐采纳,获得10
21秒前
Adam完成签到 ,获得积分10
23秒前
subay完成签到,获得积分10
23秒前
24秒前
谁家那小谁完成签到 ,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
Owen应助LZ采纳,获得10
28秒前
虚心的芹发布了新的文献求助10
28秒前
subay发布了新的文献求助10
29秒前
xiaoyou发布了新的文献求助10
31秒前
32秒前
梧桐完成签到,获得积分10
33秒前
英姑应助Karma采纳,获得10
35秒前
CCR发布了新的文献求助10
35秒前
研友_ZG4ml8完成签到,获得积分10
36秒前
Tao完成签到,获得积分10
39秒前
谦让的鹏煊完成签到,获得积分10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150