纤维素乙醇
酵母
人口
生物燃料
发酵
生化工程
生物过程
水解
乙醇燃料
酶水解
生物技术
生物过程工程
化学
生物
纤维素
生物化学
化学工程
工程类
人口学
社会学
作者
Xiao Yin,Bryan Coleman,Ponnandy Prabhu,Margaret Yang,Fei Wen
标识
DOI:10.1021/acssynbio.3c00669
摘要
In recent decades, whole-cell biocatalysis has played an increasingly important role in the food, pharmaceutical, and energy sector. One promising application is the use of ethanologenic yeast displaying minicellulosomes on the cell surface to combine cellulose hydrolysis and fermentation into a single step for consolidated bioprocessing. However, cellulosic ethanol production using existing yeast whole-cell biocatalysts (yWCBs) has not reached industrial feasibility due to their inefficient cellulose hydrolysis. As prior studies have demonstrated enzyme density on the yWCB surface to be one of the most important parameters for enhancing cellulose hydrolysis, we sought to maximize this parameter at both the population and single-cell levels in yWCBs displaying tetrafunctional minicellulosomes. At the population level, enzyme density is limited by the presence of a nondisplay population constituting 25–50% of all cells. In this study, we identified the cause to be plasmid loss and successfully eliminated the nondisplay population to generate compositionally uniform yWCBs. At the single-cell level, we demonstrate that enzyme density is limited by molecular crowding, which hinders minicellulosome assembly. By adjusting the integrated gene copy number, we obtained yWCBs of tunable enzyme display levels. This tunability allowed us to avoid the crowding-limited regime and achieve a maximum enzyme density per cell. As a result, the best strain showed a cellulose-to-ethanol yield of 4.92 g/g, corresponding to 96% of the theoretical maximum and near-complete conversion (∼96%) of the starting cellulose (1% PASC). Our holistic engineering strategy that combines a population and single-cell level approach is broadly applicable to enhance the WCB performance in other biocatalytic cascade schemes.
科研通智能强力驱动
Strongly Powered by AbleSci AI