CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models

概率逻辑 计算机科学 人工智能 机器学习 自然语言处理
作者
Saurav Jha,Dong Gong,Lina Yao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.19137
摘要

Continual learning (CL) aims to help deep neural networks to learn new knowledge while retaining what has been learned. Recently, pre-trained vision-language models such as CLIP, with powerful generalization ability, have been gaining traction as practical CL candidates. However, the domain mismatch between the pre-training and the downstream CL tasks calls for finetuning of the CLIP on the latter. The deterministic nature of the existing finetuning methods makes them overlook the many possible interactions across the modalities and deems them unsafe for high-risk CL tasks requiring reliable uncertainty estimation. To address these, our work proposes Continual LeArning with Probabilistic finetuning (CLAP). CLAP develops probabilistic modeling over task-specific modules with visual-guided text features, providing more reliable fine-tuning in CL. It further alleviates forgetting by exploiting the rich pre-trained knowledge of CLIP for weight initialization and distribution regularization of task-specific modules. Cooperating with the diverse range of existing prompting methods, CLAP can surpass the predominant deterministic finetuning approaches for CL with CLIP. Lastly, we study the superior uncertainty estimation abilities of CLAP for novel data detection and exemplar selection within CL setups. Our code is available at \url{https://github.com/srvCodes/clap4clip}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXB完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
xuhailong完成签到,获得积分20
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
5秒前
ayayaya完成签到 ,获得积分10
5秒前
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
枫影应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得30
5秒前
KARRY应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
JJ田叶完成签到,获得积分10
5秒前
8R60d8应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
藤椒辣鱼应助科研通管家采纳,获得10
6秒前
善学以致用应助qizhixu采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Akim应助想个名字采纳,获得30
6秒前
8秒前
安陌煜发布了新的文献求助30
9秒前
9秒前
丰富的宛亦完成签到 ,获得积分10
10秒前
善学以致用应助HXL采纳,获得10
10秒前
Singularity举报iiing求助涉嫌违规
10秒前
11秒前
小二郎应助三金采纳,获得10
11秒前
罗密欧与沐浴液完成签到 ,获得积分10
12秒前
13秒前
Akim应助被淹死的鱼采纳,获得10
14秒前
天天快乐应助zhao采纳,获得10
16秒前
揽星色发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644