已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Contrastive Pedestrian Attentive and Correlation Learning Network for Occluded Person Re-Identification

行人 计算机科学 相关性 人工智能 鉴定(生物学) 计算机视觉 模式识别(心理学) 数学 工程类 几何学 运输工程 植物 生物
作者
Liying Gao,Bingliang Jiao,Yuzhou Long,Kai Niu,He Huang,Peng Wang,Yanning Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tcsvt.2024.3379577
摘要

Occluded person Re-identification (ReID) aims to match occluded and holistic pedestrian images across different camera views. This task presents two primary challenges. First, it is crucial to accurately capture pedestrian foregrounds from seriously occluded person images. Second, a noticeable information asymmetry exists between the partial body in occluded images and the complete body in corresponding holistic images, which could cause the ReID model to underestimate their similarities. To address these challenges, we introduce a contrastive pedestrian attentive and correlation learning (CpaCol) model. Within CpaCol, we first design a Contrastive Pedestrian Attention (ContrastAttn) module to capture pedestrian foregrounds from occluded images. In this process, we notice that most existing attention-based methods only supervise the final predictions with identity loss yet neglect its causality with the generated attention maps, which could mislead the model to capture some salient yet pedestrian-irrelevant noises as discriminative clues. To rectify this, we integrate contrastive learning into our ContrastAttn module to guide it to learn the semantic divergence between pedestrian foregrounds and noises, thereby capturing pedestrian foregrounds more accurately. Besides, we propose a correlation learning module, where we tailor an effective dense feature correlation learning tool, 4D convolution, to enable it to adapt to pedestrian images and capture corresponding clues between comparing images. By focusing more on corresponding clues, our model could avoid overemphasizing the inherent information asymmetry between occluded and holistic images, thereby improving re-identification. Empowered by these modules, our CpaCol achieves state-of-the-art performance on three relevant ReID settings, i.e ., occluded, partial, and holistic ReID. Our code is available in https://github.com/nwpugaoliying/CpaCol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
十三月发布了新的文献求助10
2秒前
积极马里奥完成签到 ,获得积分10
2秒前
桐桐应助拾叁采纳,获得10
2秒前
John完成签到 ,获得积分10
3秒前
xiu-er完成签到,获得积分10
4秒前
6秒前
李士祥关注了科研通微信公众号
10秒前
15秒前
16秒前
rynchee完成签到 ,获得积分10
16秒前
17秒前
小王小王完成签到 ,获得积分10
18秒前
寒冷平松完成签到 ,获得积分10
19秒前
殷勤柠檬发布了新的文献求助10
19秒前
21秒前
22秒前
彭于晏完成签到,获得积分10
23秒前
okay好好完成签到 ,获得积分10
24秒前
Ava应助GG小丁同学采纳,获得10
27秒前
上官若男应助乖巧的菜猪采纳,获得10
28秒前
28秒前
打打应助文天采纳,获得10
28秒前
Larvenpiz完成签到,获得积分10
29秒前
30秒前
33秒前
kf033发布了新的文献求助10
35秒前
38秒前
冰西瓜完成签到 ,获得积分10
38秒前
39秒前
ggn完成签到,获得积分10
42秒前
43秒前
wanci应助悦耳薯片采纳,获得10
45秒前
kf033完成签到,获得积分10
45秒前
47秒前
xiu-er发布了新的文献求助10
51秒前
拾叁完成签到,获得积分10
52秒前
卢雅妮完成签到 ,获得积分10
52秒前
52秒前
634301059发布了新的文献求助10
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162075
求助须知:如何正确求助?哪些是违规求助? 2813189
关于积分的说明 7898918
捐赠科研通 2472263
什么是DOI,文献DOI怎么找? 1316381
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142