估计员
群(周期表)
分类器(UML)
计算机科学
Lasso(编程语言)
数据挖掘
人工智能
统计
算法
数学
模式识别(心理学)
万维网
有机化学
化学
作者
Wenxin Huang,Yiru Wang,Lingyun Zhou
标识
DOI:10.1177/1536867x241233642
摘要
In this article, we introduce a new command, classifylasso, that implements the classifier-lasso method (Su, Shi, and Phillips, 2016, Econometrica 84: 2215–2264) to simultaneously identify and estimate unobserved parameter heterogeneity in panel-data models using penalized techniques. We document the functionality of this command, including 1) penalized least-squares estimation of group-specific coefficients and classification of unknown group membership under a certain number of groups; 2) two lasso-type estimators with robust standard errors, namely, classifier-lasso and postlasso; and 3) determination of the number of groups based on an information criterion. We further develop some postestimation commands to display and visualize the estimation results.
科研通智能强力驱动
Strongly Powered by AbleSci AI