Multi-Source and Multi-modal Deep Network Embedding for Cross-Network Node Classification

计算机科学 判别式 节点(物理) 情态动词 嵌入 人工智能 分类器(UML) 数据挖掘 机器学习 化学 结构工程 高分子化学 工程类
作者
Hongwei Yang,Hui He,Weizhe Zhang,Yan Wang,Jing Lin
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (6): 1-26 被引量:21
标识
DOI:10.1145/3653304
摘要

In recent years, to address the issue of networked data sparsity in node classification tasks, cross-network node classification (CNNC) leverages the richer information from a source network to enhance the performance of node classification in the target network, which typically has sparser information. However, in real-world applications, labeled nodes may be collected from multiple sources with multiple modalities (e.g., text, vision, and video). Naive application of single-source and single-modal CNNC methods may result in sub-optimal solutions. To this end, in this article, we propose a model called Multi-source and Multi-modal Cross-network Deep Network Embedding (M 2 CDNE) for cross-network node classification. In M 2 CDNE, we propose a deep multi-modal network embedding approach that combines the extracted deep multi-modal features to make the node vector representations network invariant. In addition, we apply dynamic adversarial adaptation to assess the significance of marginal and conditional probability distributions between each source and target network to make node vector representations label discriminative. Furthermore, we devise to classify nodes in the target network through the related source classifier and aggregate different predictions utilizing respective network weights, corresponding to the discrepancy between each source and target network. Extensive experiments performed on real-world datasets demonstrate that the proposed M 2 CDNE significantly outperforms the state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助东方向露采纳,获得30
刚刚
刚刚
彭于晏应助luochunsheng采纳,获得10
1秒前
longer发布了新的文献求助10
2秒前
3秒前
南风未起发布了新的文献求助10
3秒前
英姑应助优美紫槐采纳,获得10
3秒前
哭泣又柔发布了新的文献求助10
3秒前
4秒前
LG发布了新的文献求助10
4秒前
梦想成为高知悍妇完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
浪子应助火星上送终采纳,获得10
8秒前
10秒前
10秒前
失眠的契完成签到,获得积分10
11秒前
11秒前
11秒前
英俊的铭应助南风未起采纳,获得10
12秒前
Youlu发布了新的文献求助10
14秒前
哭泣又柔完成签到,获得积分10
15秒前
Miss-Li完成签到,获得积分10
15秒前
16秒前
16秒前
wfengfengw发布了新的文献求助10
16秒前
16秒前
KerwinYang发布了新的文献求助10
17秒前
17秒前
18秒前
彭于晏应助Youlu采纳,获得10
18秒前
共享精神应助江上采纳,获得10
19秒前
19秒前
摇匀发布了新的文献求助10
20秒前
duoduoyishan发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
DAIXI761419完成签到,获得积分10
21秒前
zxx完成签到,获得积分10
21秒前
Jasper应助益生菌小哥采纳,获得10
21秒前
xc完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720530
求助须知:如何正确求助?哪些是违规求助? 5260834
关于积分的说明 15291524
捐赠科研通 4869955
什么是DOI,文献DOI怎么找? 2615129
邀请新用户注册赠送积分活动 1565084
关于科研通互助平台的介绍 1522191