Multi-Source and Multi-modal Deep Network Embedding for Cross-Network Node Classification

计算机科学 判别式 节点(物理) 情态动词 嵌入 人工智能 分类器(UML) 数据挖掘 机器学习 化学 结构工程 高分子化学 工程类
作者
Hongwei Yang,Hui He,Weizhe Zhang,Yan Wang,Jing Lin
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (6): 1-26 被引量:21
标识
DOI:10.1145/3653304
摘要

In recent years, to address the issue of networked data sparsity in node classification tasks, cross-network node classification (CNNC) leverages the richer information from a source network to enhance the performance of node classification in the target network, which typically has sparser information. However, in real-world applications, labeled nodes may be collected from multiple sources with multiple modalities (e.g., text, vision, and video). Naive application of single-source and single-modal CNNC methods may result in sub-optimal solutions. To this end, in this article, we propose a model called Multi-source and Multi-modal Cross-network Deep Network Embedding (M 2 CDNE) for cross-network node classification. In M 2 CDNE, we propose a deep multi-modal network embedding approach that combines the extracted deep multi-modal features to make the node vector representations network invariant. In addition, we apply dynamic adversarial adaptation to assess the significance of marginal and conditional probability distributions between each source and target network to make node vector representations label discriminative. Furthermore, we devise to classify nodes in the target network through the related source classifier and aggregate different predictions utilizing respective network weights, corresponding to the discrepancy between each source and target network. Extensive experiments performed on real-world datasets demonstrate that the proposed M 2 CDNE significantly outperforms the state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小会发布了新的文献求助30
1秒前
清秀灵薇完成签到,获得积分10
1秒前
丰富猕猴桃完成签到,获得积分10
2秒前
2秒前
2秒前
泡泡完成签到 ,获得积分10
2秒前
2秒前
3秒前
JamesPei应助7890733采纳,获得10
3秒前
jy完成签到,获得积分10
3秒前
Simoni完成签到,获得积分10
4秒前
Walter发布了新的文献求助10
4秒前
SUPERH0T发布了新的文献求助10
4秒前
4秒前
巴图鲁完成签到,获得积分10
4秒前
kimoki完成签到 ,获得积分10
4秒前
5秒前
5秒前
hht完成签到,获得积分10
5秒前
万能图书馆应助清秀的芾采纳,获得10
5秒前
6秒前
6秒前
xia完成签到,获得积分10
6秒前
Ava应助Everglow采纳,获得10
6秒前
Begonia发布了新的文献求助10
6秒前
科研通AI6应助路纹婷采纳,获得10
7秒前
7秒前
7秒前
阳阳发布了新的文献求助10
8秒前
8秒前
8秒前
Hello应助淡定的不言采纳,获得10
8秒前
ding应助annieduan采纳,获得10
9秒前
9秒前
salt发布了新的文献求助10
9秒前
美晶完成签到,获得积分20
9秒前
yfy_fairy发布了新的文献求助10
9秒前
比个耶发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
叭叭发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530