Multi-Source and Multi-modal Deep Network Embedding for Cross-Network Node Classification

计算机科学 判别式 节点(物理) 情态动词 嵌入 人工智能 分类器(UML) 数据挖掘 机器学习 化学 结构工程 高分子化学 工程类
作者
Hongwei Yang,Hui He,Weizhe Zhang,Yan Wang,Jing Lin
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (6): 1-26 被引量:21
标识
DOI:10.1145/3653304
摘要

In recent years, to address the issue of networked data sparsity in node classification tasks, cross-network node classification (CNNC) leverages the richer information from a source network to enhance the performance of node classification in the target network, which typically has sparser information. However, in real-world applications, labeled nodes may be collected from multiple sources with multiple modalities (e.g., text, vision, and video). Naive application of single-source and single-modal CNNC methods may result in sub-optimal solutions. To this end, in this article, we propose a model called Multi-source and Multi-modal Cross-network Deep Network Embedding (M 2 CDNE) for cross-network node classification. In M 2 CDNE, we propose a deep multi-modal network embedding approach that combines the extracted deep multi-modal features to make the node vector representations network invariant. In addition, we apply dynamic adversarial adaptation to assess the significance of marginal and conditional probability distributions between each source and target network to make node vector representations label discriminative. Furthermore, we devise to classify nodes in the target network through the related source classifier and aggregate different predictions utilizing respective network weights, corresponding to the discrepancy between each source and target network. Extensive experiments performed on real-world datasets demonstrate that the proposed M 2 CDNE significantly outperforms the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助米奇采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
乖乖完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
3秒前
冬瓜熊发布了新的文献求助10
3秒前
4秒前
yanjiusheng完成签到,获得积分10
4秒前
5秒前
陶醉的莫茗完成签到,获得积分10
5秒前
6秒前
7秒前
bu1998关注了科研通微信公众号
7秒前
终醒发布了新的文献求助10
8秒前
zhang@完成签到,获得积分10
8秒前
9秒前
9秒前
张乐发布了新的文献求助10
9秒前
9秒前
Jasper应助123采纳,获得10
11秒前
田様应助广成子采纳,获得10
11秒前
科研通AI6应助semigreen采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
believe发布了新的文献求助10
13秒前
米奇发布了新的文献求助10
13秒前
温暖的皮皮虾完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
Yanluo发布了新的文献求助20
16秒前
16秒前
Hello应助花源采纳,获得10
17秒前
巧克力曲奇冰激凌完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096