镥
抗磁性
金刚石顶砧
材料科学
超导电性
氢化物
分析化学(期刊)
氧化物
化学
热力学
凝聚态物理
金属
冶金
高压
钇
磁场
有机化学
物理
量子力学
作者
Yifeng Han,Yunbo Ou,Hualei Sun,Jan Kopaczek,Gerson J. Leonel,Xin Guo,Benjamin L. Brugman,Kurt Leinenweber,Hongwu Xu,Meng Wang,Sefaattin Tongay,Alexandra Navrotsky
标识
DOI:10.1073/pnas.2321540121
摘要
Nitrogen doped lutetium hydride has drawn global attention in the pursuit of room-temperature superconductivity near ambient pressure and temperature. However, variable synthesis techniques and uncertainty surrounding nitrogen concentration have contributed to extensive debate within the scientific community about this material and its properties. We used a solid-state approach to synthesize nitrogen doped lutetium hydride at high pressure and temperature (HPT) and analyzed the residual starting materials to determine its nitrogen content. High temperature oxide melt solution calorimetry determined the formation enthalpy of LuH 1.96 N 0.02 (LHN) from LuH 2 and LuN to be −28.4 ± 11.4 kJ/mol. Magnetic measurements indicated diamagnetism which increased with nitrogen content. Ambient pressure conductivity measurements observed metallic behavior from 5 to 350 K, and the constant and parabolic magnetoresistance changed with increasing temperature. High pressure conductivity measurements revealed that LHN does not exhibit superconductivity up to 26.6 GPa. We compressed LHN in a diamond anvil cell to 13.7 GPa and measured the Raman signal at each step, with no evidence of any phase transition. Despite the absence of superconductivity, a color change from blue to purple to red was observed with increasing pressure. Thus, our findings confirm the thermodynamic stability of LHN, do not support superconductivity, and provide insights into the origins of its diamagnetism.
科研通智能强力驱动
Strongly Powered by AbleSci AI