Fluorite-structured antiferroelectric hafnium-zirconium oxide for emerging nonvolatile memory and neuromorphic-computing applications

神经形态工程学 萤石 材料科学 反铁电性 氧化锆 氧化物 计算机科学 光电子学 并行计算 冶金 铁电性 人工神经网络 机器学习 电介质
作者
Kangli Xu,Tianyu Wang,Jiajie Yu,Yongkai Liu,Zhenhai Li,Chen Lu,Jieru Song,Jialin Meng,Hao Zhu,Qingqing Sun,David Wei Zhang,Lin Chen
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (2) 被引量:3
标识
DOI:10.1063/5.0175439
摘要

The rapid progress of the internet of things, cloud computing, and artificial intelligence has increased demand for high-performance computing. This demand has led to a focused exploration of novel nonvolatile memory (NVM) and brain-inspired neuromorphic-computing electronics, with research efforts directed at identifying materials compatible with complementary metal-oxide-semiconductor technology. Exploring fluorite-structured hafnium-zirconium oxide (HZO) mixed oxides has revealed promising ferroelectric (FE) and memristor characteristics, suggesting potential applications in emerging technologies. However, certain intrinsic properties of HZO-based FEs, such as high coercive fields (Ec) and polarization metastability, may pose challenges for commercial viability. Recent investigations of fluorite-structured HZO-based antiferroelectrics (AFEs) have highlighted their advantages, including lower energetic barriers, higher switching speeds, and a uniform phase distribution. These inherent benefits position fluorite-structured HZO-based AFEs as potential candidates within the NVM landscape. Furthermore, the accumulated polarization and spontaneous depolarization characteristics of fluorite-structured HZO-based AFEs make them worthy of potential integration into neuromorphic-computing because they resemble certain aspects of neuron behavior. Despite these positive aspects, a more thorough exploration and consideration are needed to address existing challenges. This review aims to present fluorite-structured HZO-based AFE materials and highlight the current challenges, possible applications, and future opportunities and can act as an update for recent developments in these intriguing materials and provide guidance for future researchers in the optimization and design of HZO-based AFE materials and devices for emerging NVM and neuromorphic-computing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZaZa完成签到,获得积分10
1秒前
1秒前
周小鱼完成签到,获得积分10
2秒前
2秒前
万能图书馆应助怕黑南琴采纳,获得10
3秒前
CipherSage应助lxlx采纳,获得10
4秒前
xiaowang完成签到,获得积分10
5秒前
5秒前
心魔完成签到,获得积分10
6秒前
7秒前
轻松狗完成签到,获得积分10
7秒前
小蘑菇应助狂飙的蛋采纳,获得10
7秒前
8秒前
dd姐发布了新的文献求助10
8秒前
斯文败类应助xieyujie采纳,获得10
8秒前
放放完成签到,获得积分10
9秒前
苏尔琳诺完成签到,获得积分10
10秒前
妖孽宇完成签到,获得积分10
10秒前
zz完成签到 ,获得积分20
11秒前
JamesPei应助Wdw2236采纳,获得10
11秒前
科目三应助精明的海露采纳,获得10
12秒前
妖孽宇发布了新的文献求助10
13秒前
荼蘼完成签到,获得积分10
14秒前
忆灵完成签到 ,获得积分10
15秒前
乐乐应助journey_qq采纳,获得10
15秒前
科研通AI5应助啦啦啦啦啦采纳,获得10
16秒前
16秒前
科研通AI5应助幸福大白采纳,获得10
18秒前
科研通AI5应助幸福大白采纳,获得30
18秒前
英姑应助waoller1采纳,获得10
21秒前
21秒前
子卿完成签到,获得积分0
21秒前
9℃完成签到 ,获得积分10
21秒前
FashionBoy应助小七2022采纳,获得10
25秒前
25秒前
choshuenco完成签到,获得积分10
26秒前
xieyujie发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3689058
求助须知:如何正确求助?哪些是违规求助? 3238641
关于积分的说明 9836318
捐赠科研通 2950705
什么是DOI,文献DOI怎么找? 1618114
邀请新用户注册赠送积分活动 764839
科研通“疑难数据库(出版商)”最低求助积分说明 738889