A 3D multi-scale CycleGAN framework for generating synthetic PETs from MRIs for Alzheimer's disease diagnosis

比例(比率) 人工智能 计算机科学 疾病 模式识别(心理学) 自然语言处理 医学 病理 地图学 地理
作者
M. Khojaste-Sarakhsi,Seyedhamidreza Shahabi Haghighi,S.M.T. Fatemi Ghomi,Elena Marchiori
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:146: 105017-105017 被引量:1
标识
DOI:10.1016/j.imavis.2024.105017
摘要

This paper proposes a novel framework for generating synthesized PET images from MRIs to fill in missing PETs and help with Alzheimer's disease (AD) diagnosis. This framework employs a 3D multi-scale image-to-image CycleGAN architecture for the end-to-end translation of MRI and PET domains together. A hybrid loss function is also proposed to enforce structural similarity while preserving voxel-wise similarity and avoiding blurry images. As shown by the quantitative and visual assessment of the synthesized PETs, this framework is superior to the state-of-the-art. Moreover, using these synthesized PETs helps improve the ternary classification of AD subjects (AD vs. MCI vs. NC). Specifically, assuming an extreme case where none of the subjects has a PET, feeding the classifier with MRIs and their corresponding synthetic PETs results in a more accurate diagnosis than feeding it with just available MRIs. Accordingly, the proposed framework can help improve AD diagnosis, which is the final goal of the current study. Ablation investigation of the proposed multi-scale framework as well as the proposed loss function, is also conducted to study their contribution to the quality of synthesized PETs. Furthermore, other factors, such as stopping criteria, the type of normalization layer, the activation function, and dropouts, are examined, concluding that the appropriate use of these factors can significantly improve the quality of synthesized PETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感性的神级完成签到,获得积分10
刚刚
ljy完成签到 ,获得积分10
1秒前
同行完成签到 ,获得积分10
1秒前
大大哈哈完成签到 ,获得积分10
1秒前
Leoniko完成签到 ,获得积分10
1秒前
朝春日走去完成签到,获得积分10
2秒前
yushun2完成签到,获得积分10
3秒前
艾科研完成签到,获得积分10
3秒前
奈奈可发布了新的文献求助10
3秒前
连冷安完成签到,获得积分10
3秒前
Criminology34应助东尼采纳,获得30
4秒前
1107任务报告完成签到,获得积分10
4秒前
Soin完成签到,获得积分10
5秒前
ww完成签到,获得积分10
6秒前
夏定海完成签到,获得积分10
6秒前
7秒前
无花果应助天青111采纳,获得10
7秒前
ljw完成签到,获得积分10
8秒前
Yuan2Yuan完成签到,获得积分10
8秒前
文丽完成签到,获得积分10
8秒前
shineshine完成签到 ,获得积分10
9秒前
顺利的边牧完成签到 ,获得积分10
9秒前
一秒的剧情完成签到,获得积分10
11秒前
鱼乐乐完成签到,获得积分10
11秒前
小冰糖完成签到 ,获得积分10
11秒前
wyblobin完成签到,获得积分10
11秒前
CUREME完成签到,获得积分10
12秒前
伤心葫芦娃完成签到 ,获得积分10
12秒前
紫枫完成签到,获得积分10
12秒前
三三磊完成签到,获得积分10
13秒前
13秒前
挂机的阿凯关注了科研通微信公众号
13秒前
文丽发布了新的文献求助30
13秒前
14秒前
吴小利完成签到,获得积分10
14秒前
14秒前
充电宝应助开放芝麻采纳,获得10
14秒前
dagongren完成签到,获得积分10
15秒前
任性完成签到,获得积分10
15秒前
Alex完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465