A 3D multi-scale CycleGAN framework for generating synthetic PETs from MRIs for Alzheimer's disease diagnosis

比例(比率) 人工智能 计算机科学 疾病 模式识别(心理学) 自然语言处理 医学 病理 地图学 地理
作者
M. Khojaste-Sarakhsi,Seyedhamidreza Shahabi Haghighi,S.M.T. Fatemi Ghomi,Elena Marchiori
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:146: 105017-105017
标识
DOI:10.1016/j.imavis.2024.105017
摘要

This paper proposes a novel framework for generating synthesized PET images from MRIs to fill in missing PETs and help with Alzheimer's disease (AD) diagnosis. This framework employs a 3D multi-scale image-to-image CycleGAN architecture for the end-to-end translation of MRI and PET domains together. A hybrid loss function is also proposed to enforce structural similarity while preserving voxel-wise similarity and avoiding blurry images. As shown by the quantitative and visual assessment of the synthesized PETs, this framework is superior to the state-of-the-art. Moreover, using these synthesized PETs helps improve the ternary classification of AD subjects (AD vs. MCI vs. NC). Specifically, assuming an extreme case where none of the subjects has a PET, feeding the classifier with MRIs and their corresponding synthetic PETs results in a more accurate diagnosis than feeding it with just available MRIs. Accordingly, the proposed framework can help improve AD diagnosis, which is the final goal of the current study. Ablation investigation of the proposed multi-scale framework as well as the proposed loss function, is also conducted to study their contribution to the quality of synthesized PETs. Furthermore, other factors, such as stopping criteria, the type of normalization layer, the activation function, and dropouts, are examined, concluding that the appropriate use of these factors can significantly improve the quality of synthesized PETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Null发布了新的文献求助10
刚刚
潇洒秋荷完成签到 ,获得积分10
1秒前
2秒前
科研通AI2S应助sjyu1985采纳,获得10
2秒前
3秒前
3秒前
糊涂涂完成签到,获得积分10
3秒前
FashionBoy应助yzbj采纳,获得10
4秒前
英姑应助Bugman采纳,获得10
5秒前
6秒前
yoyo发布了新的文献求助10
7秒前
今后应助炙热晓露采纳,获得10
7秒前
缓慢的珊珊完成签到,获得积分10
7秒前
10秒前
12秒前
独享属于自己的风完成签到,获得积分10
12秒前
啥也不懂发布了新的文献求助30
13秒前
星辰大海应助难过的飞丹采纳,获得20
14秒前
15秒前
15秒前
派大星完成签到,获得积分10
17秒前
杰瑞院士完成签到,获得积分10
17秒前
慕青应助曾经阁采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得30
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
CWNU_HAN应助科研通管家采纳,获得30
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
咖啡豆应助科研通管家采纳,获得10
20秒前
大锤应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226