A 3D multi-scale CycleGAN framework for generating synthetic PETs from MRIs for Alzheimer's disease diagnosis

比例(比率) 人工智能 计算机科学 疾病 模式识别(心理学) 自然语言处理 医学 病理 地图学 地理
作者
M. Khojaste-Sarakhsi,Seyedhamidreza Shahabi Haghighi,S.M.T. Fatemi Ghomi,Elena Marchiori
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:146: 105017-105017 被引量:1
标识
DOI:10.1016/j.imavis.2024.105017
摘要

This paper proposes a novel framework for generating synthesized PET images from MRIs to fill in missing PETs and help with Alzheimer's disease (AD) diagnosis. This framework employs a 3D multi-scale image-to-image CycleGAN architecture for the end-to-end translation of MRI and PET domains together. A hybrid loss function is also proposed to enforce structural similarity while preserving voxel-wise similarity and avoiding blurry images. As shown by the quantitative and visual assessment of the synthesized PETs, this framework is superior to the state-of-the-art. Moreover, using these synthesized PETs helps improve the ternary classification of AD subjects (AD vs. MCI vs. NC). Specifically, assuming an extreme case where none of the subjects has a PET, feeding the classifier with MRIs and their corresponding synthetic PETs results in a more accurate diagnosis than feeding it with just available MRIs. Accordingly, the proposed framework can help improve AD diagnosis, which is the final goal of the current study. Ablation investigation of the proposed multi-scale framework as well as the proposed loss function, is also conducted to study their contribution to the quality of synthesized PETs. Furthermore, other factors, such as stopping criteria, the type of normalization layer, the activation function, and dropouts, are examined, concluding that the appropriate use of these factors can significantly improve the quality of synthesized PETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
852应助杭啊采纳,获得10
1秒前
1秒前
vikki发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
在水一方应助小马过河采纳,获得10
3秒前
molec完成签到,获得积分10
3秒前
蜡笔小舒完成签到,获得积分10
3秒前
4秒前
俭朴的新柔完成签到,获得积分10
4秒前
曹国庆完成签到 ,获得积分10
5秒前
5秒前
百里丹珍完成签到,获得积分10
5秒前
6秒前
6秒前
hokin33发布了新的文献求助10
7秒前
JM完成签到,获得积分10
8秒前
8秒前
okil2完成签到,获得积分10
8秒前
子唯完成签到,获得积分10
9秒前
hehe发布了新的文献求助10
9秒前
巫凝天完成签到,获得积分10
9秒前
liu完成签到,获得积分10
10秒前
10秒前
10秒前
七柒完成签到,获得积分20
11秒前
Lucas应助abc采纳,获得10
11秒前
12秒前
12秒前
心灵美又蓝关注了科研通微信公众号
13秒前
13秒前
wjj119完成签到,获得积分10
15秒前
七柒发布了新的文献求助10
16秒前
背后觅露完成签到,获得积分10
16秒前
gao发布了新的文献求助30
16秒前
vikki完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650