Edge-relational window-attentional graph neural network for gene expression prediction in spatial transcriptomics analysis

计算机科学 窗口(计算) 数据挖掘 表达式(计算机科学) 图形 源代码 领域(数学) GSM演进的增强数据速率 人工智能 机器学习 理论计算机科学 程序设计语言 数学 纯数学 操作系统
作者
Cui Chen,Zuping Zhang,Panrui Tang,Yuanyuan Liu,Bo Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108449-108449
标识
DOI:10.1016/j.compbiomed.2024.108449
摘要

Spatial transcriptomics (ST), containing gene expression with fine-grained (i.e., different windows) spatial location within tissue samples, has become vital in developing innovative treatments. Traditional ST technology, however, rely on costly specialized commercial equipment. Addressing this, our article aims to creates a cost-effective, virtual ST approach using standard tissue images for gene expression prediction, eliminating the need for expensive equipment. Conventional approaches in this field often overlook the long-distance spatial dependencies between different sample windows or need prior gene expression data. To overcome these limitations, we propose the Edge-Relational Window-Attentional Network (ErwaNet), enhancing gene prediction by capturing both local interactions and global structural information from tissue images, without prior gene expression data. ErwaNet innovatively constructs heterogeneous graphs to model local window interactions and incorporates an attention mechanism for global information analysis. This dual framework not only provides a cost-effective solution for gene expression predictions but also obviates the necessity of prior knowledge gene expression information, a significant advantage in the field of cancer research where it enables a more efficient and accessible analytical paradigm. ErwaNet stands out as a prior-free and easy-to-implement Graph Convolution Network (GCN) method for predicting gene expression from tissue images. Evaluation of the two public breast cancer datasets shows that ErwaNet, without additional information, outperforms the state-of-the-art (SOTA) methods. Code is available at https://github.com/biyecc/ErwaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿坤完成签到,获得积分10
1秒前
dd发布了新的文献求助10
2秒前
桐桐应助小智采纳,获得10
2秒前
九川完成签到,获得积分10
2秒前
混子完成签到,获得积分10
2秒前
2秒前
3秒前
Wang完成签到,获得积分10
3秒前
星辰大海应助Ll采纳,获得10
3秒前
Jasper应助妮儿采纳,获得10
4秒前
tododoto完成签到,获得积分10
4秒前
4秒前
淙淙柔水完成签到,获得积分0
4秒前
杳鸢应助mc1220采纳,获得10
4秒前
rosa完成签到,获得积分10
4秒前
郑小七发布了新的文献求助10
5秒前
Tianxu Li完成签到,获得积分10
6秒前
6秒前
九川发布了新的文献求助10
7秒前
Lucas应助无限的隶采纳,获得10
7秒前
胡雅琴完成签到,获得积分10
7秒前
sakurai完成签到,获得积分10
8秒前
清歌扶酒关注了科研通微信公众号
8秒前
二尖瓣后叶举报ww求助涉嫌违规
8秒前
烟花应助轻松笙采纳,获得10
8秒前
沉默凡桃完成签到,获得积分10
9秒前
9秒前
luuuuuing发布了新的文献求助30
9秒前
啦啦啦完成签到,获得积分10
9秒前
小可发布了新的文献求助10
9秒前
10秒前
LKGG完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
周士乐发布了新的文献求助10
11秒前
Sunshine发布了新的文献求助10
11秒前
呼吸之野完成签到,获得积分10
12秒前
害怕的小懒虫完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759