亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Edge-relational window-attentional graph neural network for gene expression prediction in spatial transcriptomics analysis

计算机科学 窗口(计算) 数据挖掘 表达式(计算机科学) 图形 源代码 领域(数学) GSM演进的增强数据速率 人工智能 卷积神经网络 机器学习 理论计算机科学 程序设计语言 数学 纯数学 操作系统
作者
Cui Chen,Zuping Zhang,Panrui Tang,Xin Liu,Bo Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108449-108449 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108449
摘要

Spatial transcriptomics (ST), containing gene expression with fine-grained (i.e., different windows) spatial location within tissue samples, has become vital in developing innovative treatments. Traditional ST technology, however, rely on costly specialized commercial equipment. Addressing this, our article aims to creates a cost-effective, virtual ST approach using standard tissue images for gene expression prediction, eliminating the need for expensive equipment. Conventional approaches in this field often overlook the long-distance spatial dependencies between different sample windows or need prior gene expression data. To overcome these limitations, we propose the Edge-Relational Window-Attentional Network (ErwaNet), enhancing gene prediction by capturing both local interactions and global structural information from tissue images, without prior gene expression data. ErwaNet innovatively constructs heterogeneous graphs to model local window interactions and incorporates an attention mechanism for global information analysis. This dual framework not only provides a cost-effective solution for gene expression predictions but also obviates the necessity of prior knowledge gene expression information, a significant advantage in the field of cancer research where it enables a more efficient and accessible analytical paradigm. ErwaNet stands out as a prior-free and easy-to-implement Graph Convolution Network (GCN) method for predicting gene expression from tissue images. Evaluation of the two public breast cancer datasets shows that ErwaNet, without additional information, outperforms the state-of-the-art (SOTA) methods. Code is available at https://github.com/biyecc/ErwaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默善愁发布了新的文献求助10
5秒前
深情安青应助欣慰的馒头采纳,获得10
16秒前
雄壮的小妞完成签到,获得积分10
24秒前
50秒前
Ricardo完成签到 ,获得积分10
59秒前
不器完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ltttyy发布了新的文献求助10
1分钟前
燕小冷完成签到 ,获得积分10
1分钟前
zz完成签到 ,获得积分10
1分钟前
lwm不想看文献完成签到 ,获得积分10
1分钟前
ltttyy完成签到,获得积分10
1分钟前
1分钟前
激动的晓筠完成签到 ,获得积分10
1分钟前
科研通AI6应助MOMO采纳,获得10
1分钟前
文艺的枫叶完成签到 ,获得积分10
1分钟前
2分钟前
SCI发布了新的文献求助10
2分钟前
科研通AI6应助MOMO采纳,获得10
2分钟前
whj完成签到 ,获得积分10
2分钟前
SCI完成签到,获得积分10
2分钟前
2分钟前
能干的人完成签到,获得积分10
2分钟前
科研通AI6应助MOMO采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
fge完成签到,获得积分10
3分钟前
务实擎汉发布了新的文献求助10
3分钟前
3分钟前
MOMO发布了新的文献求助10
3分钟前
MchemG应助小天采纳,获得10
3分钟前
呜呜吴完成签到,获得积分10
3分钟前
靓丽的善斓完成签到 ,获得积分10
3分钟前
MOMO发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459093
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297231
捐赠科研通 4489961
什么是DOI,文献DOI怎么找? 2459447
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424585