Consistent and effective method to define the mouse estrous cycle stage by a deep learning-based model

发情周期 内科学 生物 医学 内分泌学
作者
Leena Strauss,Arttu Junnila,Anni Wärri,Maria Manti,Yiwen Jiang,Eliisa Löyttyniemi,Elisabet Stener‐Victorin,Marie K. Lagerquist,Krisztina Kukoricza,Taija Heinosalo,Sami Blom,Matti Poutanen
出处
期刊:Journal of Endocrinology [Bioscientifica]
卷期号:261 (3)
标识
DOI:10.1530/joe-23-0204
摘要

The mouse estrous cycle is divided into four stages: proestrus (P), estrus (E), metestrus (M), and diestrus (D). The estrous cycle affects reproductive hormone levels in a wide variety of tissues. Therefore, to obtain reliable results from female mice, it is important to know the estrous cycle stage during sampling. The stage can be analyzed from a vaginal smear under a microscope. However, it is time-consuming, and the results vary between evaluators. Here, we present an accurate and reproducible method for staging the mouse estrous cycle in digital whole-slide images (WSIs) of vaginal smears. We developed a model using a deep convolutional neural network (CNN) in a cloud-based platform, Aiforia Create. The CNN was trained by supervised pixel-level multiclass semantic segmentation of image features from 171 hematoxylin-stained samples. The model was validated by comparing the results obtained by CNN with those of four independent researchers. The validation data included three separate studies comprising altogether 148 slides. The total agreement attested by the Fleiss kappa value between the validators and the CNN was excellent (0.75), and when D, E, and P were analyzed separately, the kappa values were 0.89, 0.79, and 0.74, respectively. The M stage is short and not well defined by the researchers. Thus, identification of the M stage by the CNN was challenging due to the lack of proper ground truth, and the kappa value was 0.26. We conclude that our model is reliable and effective for classifying the estrous cycle stages in female mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助小利采纳,获得10
6秒前
yxy999完成签到,获得积分10
6秒前
JamesPei应助大黄采纳,获得10
7秒前
一一完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
满心欢喜完成签到 ,获得积分10
11秒前
Day木子完成签到,获得积分10
11秒前
迪鸣完成签到,获得积分10
12秒前
张三发布了新的文献求助10
15秒前
ly发布了新的文献求助10
16秒前
huzi2009发布了新的文献求助10
16秒前
16秒前
小巧富发布了新的文献求助10
18秒前
3MB完成签到 ,获得积分10
18秒前
baiabi完成签到,获得积分10
18秒前
19秒前
雪小岳完成签到,获得积分10
23秒前
细心的幼南完成签到,获得积分20
23秒前
爱撒娇的橘子完成签到,获得积分10
26秒前
马小跳完成签到,获得积分20
27秒前
hou完成签到,获得积分10
27秒前
大模型应助yuefeng采纳,获得10
27秒前
务实荧荧完成签到 ,获得积分10
29秒前
凶狠的妙柏完成签到,获得积分10
30秒前
32秒前
33秒前
hou发布了新的文献求助10
33秒前
泽丶完成签到,获得积分10
34秒前
松子完成签到,获得积分10
35秒前
35秒前
科研通AI5应助细心的幼南采纳,获得10
35秒前
36秒前
zho发布了新的文献求助10
38秒前
39秒前
40秒前
泡芙发布了新的文献求助10
40秒前
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985