A general image fusion framework using multi-task semi-supervised learning

计算机科学 人工智能 融合 图像融合 互补性(分子生物学) 机器学习 图像(数学) 模式识别(心理学) 任务(项目管理) 保险丝(电气) 融合规则 哲学 管理 经济 工程类 电气工程 生物 遗传学 语言学
作者
Wu Wang,Liang-Jian Deng,Gemine Vivone
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102414-102414 被引量:14
标识
DOI:10.1016/j.inffus.2024.102414
摘要

Existing image fusion methods primarily focus on solving single-task fusion problems, overlooking the potential information complementarity among multiple fusion tasks. Additionally, there has been no prior research in the field of image fusion that explores the mixed training of labeled and unlabeled data for different fusion tasks. To address these gaps, this paper introduces a novel multi-task semi-supervised learning approach to construct a general image fusion framework. This framework not only facilitates collaborative training for multiple fusion tasks, thereby achieving effective information complementarity among datasets from different fusion tasks, but also promotes the (unsupervised) learning of unlabeled data via the (supervised) learning of labeled data. Regarding the specific network module, we propose a so-called pseudo-siamese Laplacian pyramid transformer (PSLPT), which can effectively distinguish information at different frequencies in source images and discriminatively fuse features from distinct frequencies. More specifically, we take datasets of four typical image fusion tasks into the same PSLPT for weight updates, yielding the final general fusion model. Extensive experiments demonstrate that the obtained general fusion model exhibits promising outcomes for all four image fusion tasks, both visually and quantitatively. Moreover, comprehensive ablation and discussion experiments corroborate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanger完成签到,获得积分0
1秒前
2秒前
harrison完成签到,获得积分20
2秒前
狂野未来发布了新的文献求助10
3秒前
花露水完成签到,获得积分20
3秒前
3秒前
4秒前
小蘑菇应助咔咔采纳,获得10
6秒前
qzp发布了新的文献求助10
6秒前
leaolf应助称心曼安采纳,获得20
6秒前
顺心的巨人完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
项目多多完成签到,获得积分10
7秒前
7秒前
欢呼的冰蝶完成签到,获得积分10
7秒前
田様应助msy1998采纳,获得10
7秒前
8秒前
drdouxia发布了新的文献求助10
8秒前
老黄鱼完成签到,获得积分10
8秒前
宁人完成签到,获得积分10
8秒前
科研通AI5应助jyyg采纳,获得10
9秒前
蜒栩柚子完成签到 ,获得积分10
9秒前
明亮玉米完成签到,获得积分10
9秒前
我2023发布了新的文献求助10
9秒前
10秒前
harrison关注了科研通微信公众号
11秒前
harrison关注了科研通微信公众号
11秒前
fox完成签到 ,获得积分10
11秒前
李健应助梦玲采纳,获得10
12秒前
朱sq发布了新的文献求助10
12秒前
华仔应助宁人采纳,获得10
12秒前
桐桐应助可爱deyi采纳,获得10
13秒前
科研狗完成签到 ,获得积分10
13秒前
周周完成签到,获得积分10
13秒前
14秒前
Niko发布了新的文献求助30
14秒前
求助发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513