HybAVPnet: a Novel Hybrid Network Architecture for Antiviral Peptides Prediction

计算机科学 一般化 人工智能 人工神经网络 机器学习 特征(语言学) 计算生物学 生物 数学 数学分析 语言学 哲学
作者
Ruiquan Ge,Yixiao Xia,Minchao Jiang,Gangyong Jia,Xiaoyang Jing,Ye Li,Yunpeng Cai
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1358-1365 被引量:3
标识
DOI:10.1109/tcbb.2024.3385635
摘要

Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耐思兔米柚完成签到,获得积分10
刚刚
JamesPei应助kk采纳,获得10
1秒前
共享精神应助kk采纳,获得10
1秒前
FashionBoy应助kk采纳,获得10
1秒前
bkagyin应助kk采纳,获得10
1秒前
popvich应助yuzi采纳,获得20
1秒前
wyp发布了新的文献求助10
1秒前
2秒前
jinkk完成签到,获得积分10
2秒前
3秒前
4秒前
yyx完成签到 ,获得积分10
4秒前
科研通AI6应助lubby采纳,获得10
4秒前
jie酱拌面应助ikun采纳,获得10
5秒前
CipherSage应助芋泥脑袋采纳,获得10
5秒前
6秒前
冷傲迎梦完成签到,获得积分10
6秒前
6秒前
6秒前
xiaobei发布了新的文献求助10
6秒前
6秒前
7秒前
小巧大碗发布了新的文献求助10
7秒前
淡定的美女完成签到,获得积分10
8秒前
JamesPei应助浮生若梦采纳,获得20
8秒前
8秒前
WLWLW给一日清晨的求助进行了留言
8秒前
彭于晏应助cc采纳,获得10
9秒前
9527King完成签到,获得积分10
9秒前
aaatan发布了新的文献求助10
9秒前
有魅力的盼旋完成签到 ,获得积分10
10秒前
璐璐发布了新的文献求助20
11秒前
FashionBoy应助自觉的千凝采纳,获得10
11秒前
GH完成签到,获得积分10
12秒前
12秒前
Akim应助zp12345采纳,获得10
12秒前
12秒前
陈冲发布了新的文献求助10
12秒前
xmz应助动听服饰采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794