HybAVPnet: a Novel Hybrid Network Architecture for Antiviral Peptides Prediction

计算机科学 一般化 人工智能 人工神经网络 机器学习 特征(语言学) 计算生物学 生物 数学 语言学 数学分析 哲学
作者
Ruiquan Ge,Yixiao Xia,Minchao Jiang,Gangyong Jia,Xiaoyang Jing,Ye Li,Yunpeng Cai
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:1
标识
DOI:10.1109/tcbb.2024.3385635
摘要

Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kerrie应助dty采纳,获得10
刚刚
1秒前
天天快乐应助Ss采纳,获得10
5秒前
长风发布了新的文献求助10
5秒前
Zilch完成签到 ,获得积分10
6秒前
wen完成签到,获得积分10
7秒前
科研通AI2S应助sun1采纳,获得30
7秒前
jixuchance发布了新的文献求助10
7秒前
xiaoou完成签到 ,获得积分10
8秒前
包容冰薇完成签到,获得积分10
8秒前
英姑应助稳重宛白采纳,获得10
9秒前
Lion完成签到,获得积分20
10秒前
10秒前
11秒前
科研通AI2S应助健壮的丹萱采纳,获得10
13秒前
胡乱说兔的熊完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
深情安青应助jixuchance采纳,获得10
15秒前
戴眼镜的山人关注了科研通微信公众号
16秒前
17秒前
17秒前
LV发布了新的文献求助10
19秒前
聪明小丸子完成签到 ,获得积分10
19秒前
19秒前
CipherSage应助称心寒松采纳,获得10
19秒前
Owen应助食堂里的明湖鸭采纳,获得10
20秒前
华仔应助等风来采纳,获得10
21秒前
22秒前
天天快乐应助小L采纳,获得10
22秒前
西子阳发布了新的文献求助10
23秒前
多情寒珊发布了新的文献求助10
24秒前
大个应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
27秒前
打打应助科研通管家采纳,获得10
27秒前
邓力应助科研通管家采纳,获得20
27秒前
在水一方应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055724
求助须知:如何正确求助?哪些是违规求助? 2712356
关于积分的说明 7431187
捐赠科研通 2357329
什么是DOI,文献DOI怎么找? 1248746
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144