HybAVPnet: a Novel Hybrid Network Architecture for Antiviral Peptides Prediction

计算机科学 一般化 人工智能 人工神经网络 机器学习 特征(语言学) 计算生物学 生物 数学 数学分析 语言学 哲学
作者
Ruiquan Ge,Yixiao Xia,Minchao Jiang,Gangyong Jia,Xiaoyang Jing,Ye Li,Yunpeng Cai
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1358-1365 被引量:3
标识
DOI:10.1109/tcbb.2024.3385635
摘要

Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eee发布了新的文献求助10
刚刚
幸福胡萝卜完成签到,获得积分10
刚刚
1秒前
科研通AI5应助琅琊为刃采纳,获得10
1秒前
1秒前
1秒前
1秒前
寒冷的奇异果完成签到,获得积分10
2秒前
hziyu发布了新的文献求助10
3秒前
3秒前
野性的南蕾完成签到,获得积分10
3秒前
毛毛哦啊发布了新的文献求助10
3秒前
zzzzzk发布了新的文献求助10
3秒前
3秒前
lalala发布了新的文献求助10
4秒前
三里墩头应助oldlee采纳,获得20
4秒前
4秒前
iNk应助西安小小朱采纳,获得10
4秒前
CodeCraft应助西安小小朱采纳,获得10
4秒前
无花果应助爱学习的小迟采纳,获得10
5秒前
哭泣的映寒完成签到 ,获得积分10
5秒前
xls完成签到,获得积分10
5秒前
5秒前
故意的傲玉应助圈圈采纳,获得10
5秒前
6秒前
522完成签到,获得积分10
6秒前
6秒前
kbj发布了新的文献求助10
6秒前
7秒前
老西瓜发布了新的文献求助10
7秒前
人各有痣完成签到,获得积分10
7秒前
后知后觉发布了新的文献求助10
7秒前
xiaoxiao发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
英姑应助哈哈呀采纳,获得10
9秒前
9秒前
hurry完成签到,获得积分10
9秒前
Hungrylunch应助陈玉婷采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672