HybAVPnet: a Novel Hybrid Network Architecture for Antiviral Peptides Prediction

计算机科学 一般化 人工智能 人工神经网络 机器学习 特征(语言学) 计算生物学 生物 数学 数学分析 语言学 哲学
作者
Ruiquan Ge,Yixiao Xia,Minchao Jiang,Gangyong Jia,Xiaoyang Jing,Ye Li,Yunpeng Cai
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1358-1365 被引量:3
标识
DOI:10.1109/tcbb.2024.3385635
摘要

Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助shinn采纳,获得10
1秒前
hehehaha发布了新的文献求助20
1秒前
雪白溪流完成签到 ,获得积分10
1秒前
bkagyin应助sci_accept采纳,获得30
2秒前
Jackie_Li完成签到,获得积分10
2秒前
深情安青应助I Think采纳,获得10
2秒前
一期一会完成签到,获得积分10
2秒前
3秒前
酷波er应助yiw采纳,获得10
3秒前
3秒前
jailbreaker完成签到 ,获得积分0
3秒前
情怀应助二十四桥采纳,获得10
4秒前
仙人完成签到,获得积分10
4秒前
yan发布了新的文献求助10
4秒前
糖糖科研顺利呀完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
高贵伟诚发布了新的文献求助10
8秒前
Sober完成签到,获得积分10
8秒前
代代发布了新的文献求助10
9秒前
9秒前
U9A发布了新的文献求助10
10秒前
10秒前
鞠佳园发布了新的文献求助10
10秒前
烟花应助blingl采纳,获得30
10秒前
11秒前
shinn发布了新的文献求助10
12秒前
12秒前
兰梦发布了新的文献求助30
12秒前
13秒前
ylky完成签到 ,获得积分20
14秒前
猪猪侠发布了新的文献求助10
14秒前
852应助Shrine采纳,获得10
16秒前
16秒前
疯狂的炳发布了新的文献求助10
17秒前
gi发布了新的文献求助10
18秒前
高高笙完成签到 ,获得积分10
18秒前
SciGPT应助Palpitate采纳,获得10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517