A bearing surface defect detection method based on multi-attention mechanism Yolov8

机制(生物学) 方位(导航) 曲面(拓扑) 材料科学 计算机科学 人工智能 物理 数学 几何学 量子力学
作者
Pengcheng Ding,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086003-086003 被引量:13
标识
DOI:10.1088/1361-6501/ad4386
摘要

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a global attention mechanism module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency. Subsequently, a deep deformable convolution feature pyramid network is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight content-aware reassembly of features upsampling operator to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a multi-attention detection head to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model’s detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ls发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
yu完成签到 ,获得积分10
4秒前
5秒前
5秒前
Macro完成签到,获得积分10
6秒前
7秒前
元问晴完成签到,获得积分10
8秒前
雨歌完成签到,获得积分10
8秒前
IceyCNZ完成签到,获得积分10
9秒前
一拳超人闯完成签到,获得积分20
10秒前
在九月完成签到 ,获得积分10
10秒前
郭文汇发布了新的文献求助10
11秒前
标致小土豆完成签到 ,获得积分10
11秒前
任炳成发布了新的文献求助10
12秒前
求助人员应助小超人哈里采纳,获得10
13秒前
小龙仔123完成签到 ,获得积分10
14秒前
strickland完成签到,获得积分10
15秒前
百川完成签到,获得积分10
15秒前
TomatoRin完成签到,获得积分10
16秒前
16秒前
xia完成签到,获得积分10
17秒前
cl完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
满意的初南完成签到,获得积分10
19秒前
新来的家伙完成签到 ,获得积分10
20秒前
海鹏完成签到,获得积分10
21秒前
郭琳发布了新的文献求助20
21秒前
21秒前
LZH完成签到,获得积分10
21秒前
等待寄云完成签到 ,获得积分10
22秒前
支雨泽发布了新的文献求助10
22秒前
22秒前
陈声坤完成签到,获得积分10
23秒前
ananan完成签到 ,获得积分10
23秒前
小超人哈里完成签到,获得积分20
23秒前
Akim应助钢笔采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603597
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14854949
捐赠科研通 4694087
什么是DOI,文献DOI怎么找? 2540895
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806