A bearing surface defect detection method based on multi-attention mechanism Yolov8

机制(生物学) 方位(导航) 曲面(拓扑) 材料科学 计算机科学 人工智能 物理 数学 几何学 量子力学
作者
Pengcheng Ding,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086003-086003 被引量:4
标识
DOI:10.1088/1361-6501/ad4386
摘要

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a global attention mechanism module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency. Subsequently, a deep deformable convolution feature pyramid network is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight content-aware reassembly of features upsampling operator to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a multi-attention detection head to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model’s detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不要睡懒觉完成签到,获得积分10
1秒前
粗犷的灵松完成签到 ,获得积分10
2秒前
绿色心情发布了新的文献求助10
3秒前
3秒前
威武鸽子发布了新的文献求助10
8秒前
打打应助mk91采纳,获得10
8秒前
爆米花应助cc采纳,获得10
8秒前
abcdef完成签到 ,获得积分20
9秒前
冷公子发布了新的文献求助30
11秒前
abcdef关注了科研通微信公众号
11秒前
13秒前
14秒前
16秒前
19秒前
21秒前
三跳发布了新的文献求助10
21秒前
Wjk完成签到,获得积分10
23秒前
ZY完成签到 ,获得积分10
24秒前
24秒前
25秒前
赘婿应助hongw1980采纳,获得10
27秒前
繁荣的凝荷完成签到 ,获得积分10
27秒前
大个应助邱丘邱采纳,获得15
28秒前
谷谷发布了新的文献求助10
28秒前
30秒前
孙彩瑛发布了新的文献求助10
31秒前
yuxiaobolab完成签到,获得积分10
35秒前
传奇3应助33采纳,获得10
37秒前
38秒前
42秒前
43秒前
Lv完成签到,获得积分10
43秒前
purplelove发布了新的文献求助10
47秒前
孙彩瑛完成签到,获得积分10
48秒前
酷波er应助争当科研巨匠采纳,获得10
49秒前
50秒前
52秒前
52秒前
54秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075