A bearing surface defect detection method based on multi-attention mechanism Yolov8

机制(生物学) 方位(导航) 曲面(拓扑) 材料科学 计算机科学 人工智能 物理 数学 几何学 量子力学
作者
Pengcheng Ding,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086003-086003 被引量:4
标识
DOI:10.1088/1361-6501/ad4386
摘要

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a global attention mechanism module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency. Subsequently, a deep deformable convolution feature pyramid network is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight content-aware reassembly of features upsampling operator to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a multi-attention detection head to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model’s detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqh完成签到,获得积分10
2秒前
拼搏的帽子完成签到 ,获得积分10
3秒前
luffy完成签到 ,获得积分10
4秒前
wang1完成签到 ,获得积分10
6秒前
天天快乐应助元明清采纳,获得30
8秒前
lmq完成签到 ,获得积分10
9秒前
yanglinhai完成签到 ,获得积分10
11秒前
ZS完成签到,获得积分10
12秒前
Lei发布了新的文献求助10
12秒前
头发乱了发布了新的文献求助20
17秒前
Panini完成签到 ,获得积分10
17秒前
ttqql完成签到,获得积分10
17秒前
sunnyqqz完成签到,获得积分10
20秒前
23秒前
幽默赛君完成签到 ,获得积分10
23秒前
淡然以柳完成签到 ,获得积分10
23秒前
Jasper应助重庆森林采纳,获得10
27秒前
Lei完成签到,获得积分10
29秒前
酷炫觅双完成签到 ,获得积分10
30秒前
Edou完成签到,获得积分10
31秒前
烟火会翻滚完成签到,获得积分10
31秒前
42秒前
45秒前
June完成签到,获得积分10
47秒前
xz发布了新的文献求助10
49秒前
sll完成签到 ,获得积分10
51秒前
zx完成签到 ,获得积分10
51秒前
t铁核桃1985完成签到 ,获得积分10
53秒前
xzy998应助科研通管家采纳,获得10
58秒前
万能图书馆应助科研通管家采纳,获得150
58秒前
科目三应助科研通管家采纳,获得10
58秒前
完美世界应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
丘比特应助科研通管家采纳,获得10
58秒前
58秒前
MC123完成签到,获得积分10
59秒前
美好灵寒完成签到 ,获得积分10
59秒前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
着急的果汁完成签到 ,获得积分10
1分钟前
zz完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188071
求助须知:如何正确求助?哪些是违规求助? 4372504
关于积分的说明 13613427
捐赠科研通 4225688
什么是DOI,文献DOI怎么找? 2317866
邀请新用户注册赠送积分活动 1316437
关于科研通互助平台的介绍 1266095