A bearing surface defect detection method based on multi-attention mechanism Yolov8

机制(生物学) 方位(导航) 曲面(拓扑) 材料科学 计算机科学 人工智能 物理 数学 几何学 量子力学
作者
Pengcheng Ding,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086003-086003 被引量:2
标识
DOI:10.1088/1361-6501/ad4386
摘要

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a global attention mechanism module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency. Subsequently, a deep deformable convolution feature pyramid network is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight content-aware reassembly of features upsampling operator to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a multi-attention detection head to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model’s detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxc111发布了新的文献求助10
刚刚
魔幻的从梦完成签到,获得积分10
刚刚
1秒前
Xiaoxiao应助sunyexuan采纳,获得10
2秒前
3秒前
4秒前
淼淼之锋完成签到 ,获得积分10
4秒前
赢赢完成签到 ,获得积分10
4秒前
5秒前
6秒前
科目三应助落落采纳,获得10
8秒前
67发布了新的文献求助10
8秒前
8秒前
溜溜完成签到,获得积分10
8秒前
xixi完成签到 ,获得积分10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
撒上咖啡应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
琪琪扬扬发布了新的文献求助10
9秒前
sutharsons应助科研通管家采纳,获得30
9秒前
orixero应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
清爽老九应助科研通管家采纳,获得20
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
hui发布了新的文献求助30
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
11秒前
迟大猫应助若狂采纳,获得10
11秒前
11111发布了新的文献求助30
11秒前
溜溜发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808