A Bearing surface defect detection method based on multi-attention mechanism Yolov8

机制(生物学) 方位(导航) 曲面(拓扑) 材料科学 计算机科学 人工智能 数学 哲学 几何学 认识论
作者
Pengcheng Ding,Han Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad4386
摘要

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a Global Attention Mechanism (GAM) module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency.Subsequently, a deep deformable convolution feature pyramid network (TDSFPN) is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight Content-Aware Reassembly of Features upsampling operator (CARAFE) to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a Multi-Attention Detection Head (MADH) to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model's detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL完成签到,获得积分20
刚刚
Phebe发布了新的文献求助10
1秒前
1秒前
无语的帽子完成签到,获得积分10
1秒前
研友_851KE8完成签到,获得积分10
1秒前
2秒前
fff完成签到,获得积分10
2秒前
宝川完成签到,获得积分20
2秒前
丰富广缘发布了新的文献求助10
3秒前
3秒前
Clam发布了新的文献求助10
4秒前
斐_完成签到,获得积分10
4秒前
lulu发布了新的文献求助10
4秒前
6秒前
Akim应助程南采纳,获得10
7秒前
7秒前
7秒前
高青丝完成签到,获得积分20
8秒前
8秒前
LL发布了新的文献求助10
8秒前
susu发布了新的文献求助10
9秒前
超级mxl发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
mmyhn发布了新的文献求助10
12秒前
mmy发布了新的文献求助10
12秒前
12秒前
聪明梦容完成签到,获得积分20
13秒前
lllym发布了新的文献求助10
13秒前
彭于晏应助终陌采纳,获得10
13秒前
asdfj应助史迪仔采纳,获得10
14秒前
zz完成签到 ,获得积分10
14秒前
Hello应助blhbpjn采纳,获得10
16秒前
菠萝蜜发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
万能图书馆应助LL采纳,获得10
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608