Multi-scale generative adversarial networks (GAN) for generation of three-dimensional subsurface geological models from limited boreholes and prior geological knowledge

钻孔 地质学 比例(比率) 地层学 生成语法 任务(项目管理) 人工智能 计算机科学 机器学习 岩土工程 工程类 古生物学 地图学 地理 系统工程 构造学
作者
Borui Lyu,Yu Wang,Chao Shi
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:170: 106336-106336 被引量:4
标识
DOI:10.1016/j.compgeo.2024.106336
摘要

Delineation of subsurface stratigraphy is an essential task in site characterization. A three-dimensional (3D) subsurface geological model that precisely depicts stratigraphic relationships in a specific site can greatly benefit subsequent geotechnical analysis and designs. However, only a limited number of boreholes is usually available from a specific site in practice. It is therefore challenging to properly construct complex stratigraphic relationships in a 3D space based on sparse measurements from limited boreholes. To tackle this challenge, this study proposes a generative machine learning method called multi-scale generative adversarial networks (MS-GAN) for developing 3D subsurface geological models from limited boreholes and a 3D training image representing prior geological knowledge. The proposed method automatically learns multi-scale 3D stratigraphic patterns extracted from the 3D training image and generates 3D geological models conditioned on limited borehole data in an iterative manner. The proposed method is illustrated using 3D numerical and real data examples, and the results indicate that the proposed method can effectively learn the stratigraphic information from a 3D training image to generate multiple 3D realizations from sparse boreholes. Both accuracy and associated uncertainty of 3D realizations are quantified. Effect of borehole number on performance of the proposed method is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zfzf0422完成签到 ,获得积分10
1秒前
上官若男应助jackie采纳,获得10
1秒前
1秒前
我是站长才怪应助Benliu采纳,获得20
2秒前
2秒前
zh20130完成签到,获得积分10
2秒前
2秒前
TT发布了新的文献求助10
3秒前
Star1983发布了新的文献求助10
3秒前
研友_LXdbaL完成签到,获得积分10
4秒前
5秒前
在水一方应助66采纳,获得10
6秒前
6秒前
6秒前
缘一发布了新的文献求助10
7秒前
junzilan发布了新的文献求助10
8秒前
CipherSage应助赖道之采纳,获得10
9秒前
ccc完成签到,获得积分10
9秒前
9秒前
9秒前
12秒前
Pauline完成签到,获得积分10
14秒前
jackie发布了新的文献求助10
14秒前
笨笨摇伽发布了新的文献求助10
16秒前
科目三应助皓月繁星采纳,获得10
16秒前
tomato完成签到,获得积分20
18秒前
CodeCraft应助缘一采纳,获得10
19秒前
小二郎应助刘铭晨采纳,获得10
19秒前
19秒前
大个应助风雨1210采纳,获得10
19秒前
一壶清酒完成签到,获得积分10
19秒前
20秒前
tomato发布了新的文献求助30
21秒前
陈莹发布了新的文献求助10
22秒前
23秒前
23秒前
小狗同志006完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808