Multi-scale generative adversarial networks (GAN) for generation of three-dimensional subsurface geological models from limited boreholes and prior geological knowledge

钻孔 地质学 比例(比率) 地层学 生成语法 任务(项目管理) 人工智能 计算机科学 机器学习 岩土工程 工程类 古生物学 地图学 地理 系统工程 构造学
作者
Borui Lyu,Yu Wang,Chao Shi
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:170: 106336-106336 被引量:3
标识
DOI:10.1016/j.compgeo.2024.106336
摘要

Delineation of subsurface stratigraphy is an essential task in site characterization. A three-dimensional (3D) subsurface geological model that precisely depicts stratigraphic relationships in a specific site can greatly benefit subsequent geotechnical analysis and designs. However, only a limited number of boreholes is usually available from a specific site in practice. It is therefore challenging to properly construct complex stratigraphic relationships in a 3D space based on sparse measurements from limited boreholes. To tackle this challenge, this study proposes a generative machine learning method called multi-scale generative adversarial networks (MS-GAN) for developing 3D subsurface geological models from limited boreholes and a 3D training image representing prior geological knowledge. The proposed method automatically learns multi-scale 3D stratigraphic patterns extracted from the 3D training image and generates 3D geological models conditioned on limited borehole data in an iterative manner. The proposed method is illustrated using 3D numerical and real data examples, and the results indicate that the proposed method can effectively learn the stratigraphic information from a 3D training image to generate multiple 3D realizations from sparse boreholes. Both accuracy and associated uncertainty of 3D realizations are quantified. Effect of borehole number on performance of the proposed method is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科研通AI2S应助谦让的小姜采纳,获得10
5秒前
香蕉觅云应助玖梦采纳,获得10
5秒前
Tomato发布了新的文献求助10
6秒前
寒冷丹雪完成签到,获得积分10
6秒前
MS903完成签到 ,获得积分10
6秒前
慕青应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
顾矜应助哈哈哈采纳,获得10
10秒前
搜集达人应助Joyceban采纳,获得10
10秒前
尉迟衣发布了新的文献求助10
11秒前
四夕完成签到 ,获得积分10
12秒前
13秒前
852应助二指弹采纳,获得10
14秒前
CJW完成签到 ,获得积分10
14秒前
打打应助dingm2采纳,获得10
17秒前
史塔克发布了新的文献求助10
17秒前
19秒前
反杀闰土的猹完成签到,获得积分10
19秒前
哈哈哈完成签到,获得积分10
19秒前
尉迟衣完成签到,获得积分20
20秒前
redeem完成签到,获得积分10
20秒前
LK完成签到 ,获得积分10
20秒前
22秒前
JTchen完成签到,获得积分10
22秒前
22秒前
Joyceban发布了新的文献求助10
23秒前
可爱的函函应助轻松汲采纳,获得10
23秒前
Hello应助稳重元冬采纳,获得10
25秒前
wjw完成签到,获得积分10
25秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079