Multi-scale generative adversarial networks (GAN) for generation of three-dimensional subsurface geological models from limited boreholes and prior geological knowledge

钻孔 地质学 比例(比率) 地层学 生成语法 任务(项目管理) 人工智能 计算机科学 机器学习 岩土工程 工程类 古生物学 地图学 地理 系统工程 构造学
作者
Borui Lyu,Yu Wang,Chao Shi
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:170: 106336-106336 被引量:4
标识
DOI:10.1016/j.compgeo.2024.106336
摘要

Delineation of subsurface stratigraphy is an essential task in site characterization. A three-dimensional (3D) subsurface geological model that precisely depicts stratigraphic relationships in a specific site can greatly benefit subsequent geotechnical analysis and designs. However, only a limited number of boreholes is usually available from a specific site in practice. It is therefore challenging to properly construct complex stratigraphic relationships in a 3D space based on sparse measurements from limited boreholes. To tackle this challenge, this study proposes a generative machine learning method called multi-scale generative adversarial networks (MS-GAN) for developing 3D subsurface geological models from limited boreholes and a 3D training image representing prior geological knowledge. The proposed method automatically learns multi-scale 3D stratigraphic patterns extracted from the 3D training image and generates 3D geological models conditioned on limited borehole data in an iterative manner. The proposed method is illustrated using 3D numerical and real data examples, and the results indicate that the proposed method can effectively learn the stratigraphic information from a 3D training image to generate multiple 3D realizations from sparse boreholes. Both accuracy and associated uncertainty of 3D realizations are quantified. Effect of borehole number on performance of the proposed method is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seebeg发布了新的文献求助10
1秒前
归尘发布了新的文献求助10
1秒前
1秒前
zgy完成签到,获得积分20
1秒前
1秒前
陶征应助胡楠采纳,获得10
2秒前
涵泽发布了新的文献求助10
2秒前
2秒前
zq发布了新的文献求助10
2秒前
yrh完成签到,获得积分10
3秒前
3秒前
华风完成签到,获得积分10
3秒前
3秒前
3秒前
欣慰妙海完成签到,获得积分10
4秒前
4秒前
Owen应助大气如雪采纳,获得30
4秒前
4秒前
恬恬完成签到,获得积分10
4秒前
NexusExplorer应助笑对人生采纳,获得10
4秒前
5秒前
上官若男应助seebeg采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Jerry完成签到,获得积分10
7秒前
善学以致用应助亚尔采纳,获得10
7秒前
8秒前
leclerc发布了新的文献求助10
8秒前
勤劳的鸡发布了新的文献求助10
9秒前
世界和平发布了新的文献求助10
9秒前
醉熏的鸿煊完成签到,获得积分20
10秒前
美丽猫咪发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
小蘑菇应助顺心的定帮采纳,获得10
12秒前
12秒前
12秒前
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099