化学
荧光
硝基
试剂
香豆素
光化学
有机化学
物理
量子力学
作者
Jiajun Chen,Yunxi Cui,Peixuan Wu,Rohan S. Dassanayake,Peng Yu,Kun Fu,Zhicheng Sun,Yuanyuan Liu,Yang Zhou
标识
DOI:10.1016/j.saa.2024.124317
摘要
Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 μM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.
科研通智能强力驱动
Strongly Powered by AbleSci AI