Predicting the risk of lung cancer using machine learning: A large study based on UK Biobank

医学 接收机工作特性 肺癌 逻辑回归 预测建模 机器学习 人工智能 布里氏评分 统计 肿瘤科 内科学 计算机科学 数学
作者
Siqi Zhang,Liangwei Yang,Weiya Xu,Yue Wang,Liyuan Han,Guofang Zhao,Ting Cai
出处
期刊:Medicine [Wolters Kluwer]
卷期号:103 (16): e37879-e37879
标识
DOI:10.1097/md.0000000000037879
摘要

In response to the high incidence and poor prognosis of lung cancer, this study tends to develop a generalizable lung-cancer prediction model by using machine learning to define high-risk groups and realize the early identification and prevention of lung cancer. We included 467,888 participants from UK Biobank, using lung cancer incidence as an outcome variable, including 49 previously known high-risk factors and less studied or unstudied predictors. We developed multivariate prediction models using multiple machine learning models, namely logistic regression, naïve Bayes, random forest, and extreme gradient boosting models. The performance of the models was evaluated by calculating the areas under their receiver operating characteristic curves, Brier loss, log loss, precision, recall, and F1 scores. The Shapley additive explanations interpreter was used to visualize the models. Three were ultimately 4299 cases of lung cancer that were diagnosed in our sample. The model containing all the predictors had good predictive power, and the extreme gradient boosting model had the best performance with an area under curve of 0.998. New important predictive factors for lung cancer were also identified, namely hip circumference, waist circumference, number of cigarettes previously smoked daily, neuroticism score, age, and forced expiratory volume in 1 second. The predictive model established by incorporating novel predictive factors can be of value in the early identification of lung cancer. It may be helpful in stratifying individuals and selecting those at higher risk for inclusion in screening programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DreamMaker发布了新的文献求助10
1秒前
1秒前
3秒前
1wz完成签到,获得积分10
3秒前
4秒前
6秒前
刘JJ发布了新的文献求助10
7秒前
7秒前
10秒前
王学成发布了新的文献求助10
10秒前
12秒前
12秒前
酷波er应助许多年以后采纳,获得10
14秒前
14秒前
pluto应助刘JJ采纳,获得10
15秒前
有志者完成签到,获得积分10
15秒前
15秒前
上官若男应助科研通管家采纳,获得30
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
烟花应助追寻松采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
wu8577应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
唐宇轩完成签到 ,获得积分10
17秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得150
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
18秒前
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
18秒前
YHY应助科研通管家采纳,获得10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517