亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the risk of lung cancer using machine learning: A large study based on UK Biobank

医学 接收机工作特性 肺癌 逻辑回归 预测建模 机器学习 人工智能 布里氏评分 统计 肿瘤科 内科学 计算机科学 数学
作者
Siqi Zhang,Liangwei Yang,Weiya Xu,Yue Wang,Liyuan Han,Guofang Zhao,Ting Cai
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (16): e37879-e37879
标识
DOI:10.1097/md.0000000000037879
摘要

In response to the high incidence and poor prognosis of lung cancer, this study tends to develop a generalizable lung-cancer prediction model by using machine learning to define high-risk groups and realize the early identification and prevention of lung cancer. We included 467,888 participants from UK Biobank, using lung cancer incidence as an outcome variable, including 49 previously known high-risk factors and less studied or unstudied predictors. We developed multivariate prediction models using multiple machine learning models, namely logistic regression, naïve Bayes, random forest, and extreme gradient boosting models. The performance of the models was evaluated by calculating the areas under their receiver operating characteristic curves, Brier loss, log loss, precision, recall, and F1 scores. The Shapley additive explanations interpreter was used to visualize the models. Three were ultimately 4299 cases of lung cancer that were diagnosed in our sample. The model containing all the predictors had good predictive power, and the extreme gradient boosting model had the best performance with an area under curve of 0.998. New important predictive factors for lung cancer were also identified, namely hip circumference, waist circumference, number of cigarettes previously smoked daily, neuroticism score, age, and forced expiratory volume in 1 second. The predictive model established by incorporating novel predictive factors can be of value in the early identification of lung cancer. It may be helpful in stratifying individuals and selecting those at higher risk for inclusion in screening programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
空咻咻发布了新的文献求助10
8秒前
且听风吟发布了新的文献求助10
9秒前
12秒前
彩色凡英发布了新的文献求助30
13秒前
17秒前
23秒前
且听风吟完成签到,获得积分10
33秒前
34秒前
彩色凡英完成签到,获得积分10
37秒前
FashionBoy应助呜呼采纳,获得10
45秒前
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
打打应助zz采纳,获得10
1分钟前
张家宁发布了新的文献求助10
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
2分钟前
李志全完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
贼歪歪完成签到,获得积分10
2分钟前
传奇3应助Zhao0112采纳,获得10
2分钟前
2分钟前
eatme完成签到,获得积分10
2分钟前
2分钟前
Zhao0112发布了新的文献求助10
2分钟前
彭于晏应助保持科研热情采纳,获得10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
traveller应助语言与言语采纳,获得200
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755406
求助须知:如何正确求助?哪些是违规求助? 5494623
关于积分的说明 15381200
捐赠科研通 4893493
什么是DOI,文献DOI怎么找? 2632160
邀请新用户注册赠送积分活动 1579994
关于科研通互助平台的介绍 1535824