Predicting the risk of lung cancer using machine learning: A large study based on UK Biobank

医学 接收机工作特性 肺癌 逻辑回归 预测建模 机器学习 人工智能 布里氏评分 统计 肿瘤科 内科学 计算机科学 数学
作者
Siqi Zhang,Liangwei Yang,Weiya Xu,Yue Wang,Liyuan Han,Guofang Zhao,Ting Cai
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (16): e37879-e37879
标识
DOI:10.1097/md.0000000000037879
摘要

In response to the high incidence and poor prognosis of lung cancer, this study tends to develop a generalizable lung-cancer prediction model by using machine learning to define high-risk groups and realize the early identification and prevention of lung cancer. We included 467,888 participants from UK Biobank, using lung cancer incidence as an outcome variable, including 49 previously known high-risk factors and less studied or unstudied predictors. We developed multivariate prediction models using multiple machine learning models, namely logistic regression, naïve Bayes, random forest, and extreme gradient boosting models. The performance of the models was evaluated by calculating the areas under their receiver operating characteristic curves, Brier loss, log loss, precision, recall, and F1 scores. The Shapley additive explanations interpreter was used to visualize the models. Three were ultimately 4299 cases of lung cancer that were diagnosed in our sample. The model containing all the predictors had good predictive power, and the extreme gradient boosting model had the best performance with an area under curve of 0.998. New important predictive factors for lung cancer were also identified, namely hip circumference, waist circumference, number of cigarettes previously smoked daily, neuroticism score, age, and forced expiratory volume in 1 second. The predictive model established by incorporating novel predictive factors can be of value in the early identification of lung cancer. It may be helpful in stratifying individuals and selecting those at higher risk for inclusion in screening programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姜茶发布了新的文献求助10
刚刚
figure完成签到 ,获得积分10
2秒前
echo完成签到,获得积分10
2秒前
不想太多发布了新的文献求助10
3秒前
3秒前
3秒前
和谐灯泡发布了新的文献求助10
3秒前
taotao完成签到,获得积分20
4秒前
MLL完成签到 ,获得积分10
4秒前
默默的傲云完成签到,获得积分10
4秒前
小满完成签到,获得积分10
4秒前
Owen应助谨慎的安柏采纳,获得10
4秒前
4秒前
朴实海亦完成签到,获得积分10
4秒前
Ada完成签到 ,获得积分10
4秒前
燕子完成签到,获得积分10
5秒前
青年才俊完成签到,获得积分10
5秒前
MF完成签到,获得积分10
5秒前
dagongren完成签到,获得积分10
5秒前
兔酱发布了新的文献求助10
6秒前
6秒前
6秒前
馥芮白完成签到,获得积分10
6秒前
czzlancer完成签到,获得积分10
8秒前
Whiaper发布了新的文献求助10
8秒前
儒雅完成签到 ,获得积分10
9秒前
9秒前
gaowei完成签到,获得积分10
9秒前
英勇的飞凤完成签到,获得积分20
10秒前
10秒前
温柔的尔芙完成签到,获得积分20
11秒前
11秒前
hhy完成签到,获得积分10
11秒前
longmad完成签到,获得积分10
11秒前
和谐的醉山完成签到,获得积分0
11秒前
噗噗完成签到,获得积分10
12秒前
12秒前
12秒前
坚定书竹完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735