Predicting the risk of lung cancer using machine learning: A large study based on UK Biobank

医学 接收机工作特性 肺癌 逻辑回归 预测建模 机器学习 人工智能 布里氏评分 统计 肿瘤科 内科学 计算机科学 数学
作者
Siqi Zhang,Liangwei Yang,Weiya Xu,Yue Wang,Liyuan Han,Guofang Zhao,Ting Cai
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (16): e37879-e37879
标识
DOI:10.1097/md.0000000000037879
摘要

In response to the high incidence and poor prognosis of lung cancer, this study tends to develop a generalizable lung-cancer prediction model by using machine learning to define high-risk groups and realize the early identification and prevention of lung cancer. We included 467,888 participants from UK Biobank, using lung cancer incidence as an outcome variable, including 49 previously known high-risk factors and less studied or unstudied predictors. We developed multivariate prediction models using multiple machine learning models, namely logistic regression, naïve Bayes, random forest, and extreme gradient boosting models. The performance of the models was evaluated by calculating the areas under their receiver operating characteristic curves, Brier loss, log loss, precision, recall, and F1 scores. The Shapley additive explanations interpreter was used to visualize the models. Three were ultimately 4299 cases of lung cancer that were diagnosed in our sample. The model containing all the predictors had good predictive power, and the extreme gradient boosting model had the best performance with an area under curve of 0.998. New important predictive factors for lung cancer were also identified, namely hip circumference, waist circumference, number of cigarettes previously smoked daily, neuroticism score, age, and forced expiratory volume in 1 second. The predictive model established by incorporating novel predictive factors can be of value in the early identification of lung cancer. It may be helpful in stratifying individuals and selecting those at higher risk for inclusion in screening programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alvin发布了新的文献求助10
1秒前
HDJNCVJFKD发布了新的文献求助20
1秒前
1秒前
syyyao完成签到 ,获得积分10
1秒前
西西弗发布了新的文献求助10
2秒前
3秒前
流年发布了新的文献求助10
3秒前
yunian完成签到 ,获得积分10
3秒前
不能不穿秋裤完成签到,获得积分10
4秒前
我是老大应助sun采纳,获得10
4秒前
XIAOMUMU发布了新的文献求助10
4秒前
CodeCraft应助吴大王采纳,获得10
5秒前
Lucas应助wangwangwang采纳,获得10
5秒前
伺服完成签到 ,获得积分10
6秒前
研友_5476B5发布了新的文献求助10
6秒前
赘婿应助不爱干饭采纳,获得10
6秒前
6秒前
沉默的觅云应助TheaGao采纳,获得30
7秒前
tingtingzhang完成签到 ,获得积分10
7秒前
7秒前
wangbin743发布了新的文献求助10
7秒前
7秒前
7秒前
星迹一帆完成签到 ,获得积分10
8秒前
8秒前
希望天下0贩的0应助李哈采纳,获得10
8秒前
小二郎应助贵金属采纳,获得10
8秒前
研友_VZG7GZ应助流苏采纳,获得10
9秒前
不爱吃韭菜完成签到 ,获得积分10
10秒前
小李同学完成签到,获得积分10
10秒前
liulqyz完成签到,获得积分20
10秒前
谦让友绿完成签到,获得积分10
10秒前
丁一完成签到,获得积分10
10秒前
10秒前
星迹一帆关注了科研通微信公众号
11秒前
量子发布了新的文献求助10
12秒前
小郭关注了科研通微信公众号
12秒前
shinysparrow应助xiaoxiaoliang采纳,获得100
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655