An Unsupervised Momentum Contrastive Learning Based Transformer Network for Hyperspectral Target Detection

高光谱成像 计算机科学 变压器 人工智能 模式识别(心理学) 物理 量子力学 电压
作者
Yulei Wang,Xi Chen,Enyu Zhao,Chunhui Zhao,Meiping Song,Chunyan Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 9053-9068 被引量:6
标识
DOI:10.1109/jstars.2024.3387985
摘要

Hyperspectral target detection plays a pivotal role in various civil and military applications. Although recent advancements in deep learning have largely embraced supervised learning approaches, they often hindered by the limited availability of labeled data. Unsupervised learning, therefore, emerges as a promising alternative, yet its potential has not been fully realized in current methodologies. This paper proposes an innovative unsupervised learning framework employing a momentum contrastive learning-based transformer network specifically tailored for hyperspectral target detection. The proposed approach innovatively combines transformer-based encoder and momentum encoder networks to enhance feature extraction capabilities, adeptly capturing both local spectral details and long-range spectral dependencies through the novel overlapping spectral patch embedding and a cross-token feedforward layer. This dual-encoder design significantly improves the model's ability to discern relevant spectral features amidst complex backgrounds. Through unsupervised momentum contrastive learning, a dynamically updated queue of negative sample features is utilized so that the model can demonstrate superior spectral discriminability. This is further bolstered by a unique background suppression mechanism leveraging nonlinear transformations of cosine similarity detection results, with two nonlinearly pull-up operations, significantly enhancing target detection sensitivity, where the nonlinearly operations are the exponential function with its normalization and the power function with its normalization, respectively. Comparative analysis against seven state-of-the-art hyperspectral target detection methods across four real hyperspectral images demonstrates the effectiveness of the proposed method for hyperspectral target detection, with an increase in detection accuracy and a competitive computational efficiency. An extensive ablation study further validates the critical components of the proposed framework, confirming its comprehensive capability and applicability in hyperspectral target detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小清完成签到,获得积分10
2秒前
zinc发布了新的文献求助10
2秒前
3秒前
4秒前
英俊的铭应助yiyososo采纳,获得10
4秒前
川桜发布了新的文献求助20
4秒前
6秒前
解语花完成签到,获得积分10
6秒前
疯子扬发布了新的文献求助10
7秒前
9秒前
无花果应助能干的cen采纳,获得10
9秒前
共享精神应助务实的海之采纳,获得30
10秒前
jzyy完成签到,获得积分10
11秒前
java完成签到,获得积分10
14秒前
解语花发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
清淮完成签到 ,获得积分10
18秒前
18秒前
ssgecust完成签到,获得积分10
19秒前
20秒前
20秒前
秀丽的晓凡完成签到,获得积分10
21秒前
半青一江完成签到 ,获得积分10
21秒前
21秒前
浮游应助jzyy采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
Sandwich发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
23秒前
科目三应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961600
求助须知:如何正确求助?哪些是违规求助? 4221894
关于积分的说明 13148834
捐赠科研通 4005974
什么是DOI,文献DOI怎么找? 2192626
邀请新用户注册赠送积分活动 1206485
关于科研通互助平台的介绍 1118175