清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Unsupervised Momentum Contrastive Learning based Transformer Network for Hyperspectral Target Detection

高光谱成像 计算机科学 变压器 人工智能 模式识别(心理学) 物理 量子力学 电压
作者
Yulei Wang,Xi Chen,En-Guang Zhao,Chunhui Zhao,Meiping Song,Chunyan Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 9053-9068 被引量:2
标识
DOI:10.1109/jstars.2024.3387985
摘要

Hyperspectral target detection plays a pivotal role in various civil and military applications. Although recent advancements in deep learning have largely embraced supervised learning approaches, they often hindered by the limited availability of labeled data. Unsupervised learning, therefore, emerges as a promising alternative, yet its potential has not been fully realized in current methodologies. This paper proposes an innovative unsupervised learning framework employing a momentum contrastive learning-based transformer network specifically tailored for hyperspectral target detection. The proposed approach innovatively combines transformer-based encoder and momentum encoder networks to enhance feature extraction capabilities, adeptly capturing both local spectral details and long-range spectral dependencies through the novel overlapping spectral patch embedding and a cross-token feedforward layer. This dual-encoder design significantly improves the model's ability to discern relevant spectral features amidst complex backgrounds. Through unsupervised momentum contrastive learning, a dynamically updated queue of negative sample features is utilized so that the model can demonstrate superior spectral discriminability. This is further bolstered by a unique background suppression mechanism leveraging nonlinear transformations of cosine similarity detection results, with two nonlinearly pull-up operations, significantly enhancing target detection sensitivity, where the nonlinearly operations are the exponential function with its normalization and the power function with its normalization, respectively. Comparative analysis against seven state-of-the-art hyperspectral target detection methods across four real hyperspectral images demonstrates the effectiveness of the proposed method for hyperspectral target detection, with an increase in detection accuracy and a competitive computational efficiency. An extensive ablation study further validates the critical components of the proposed framework, confirming its comprehensive capability and applicability in hyperspectral target detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助Mine采纳,获得50
7秒前
晶杰发布了新的文献求助10
1分钟前
hongxuezhi完成签到,获得积分10
1分钟前
2分钟前
Mine发布了新的文献求助50
2分钟前
晶杰完成签到 ,获得积分10
2分钟前
大个应助雅樱采纳,获得10
2分钟前
Hello应助要减肥的婷冉采纳,获得10
3分钟前
要减肥的婷冉完成签到,获得积分10
3分钟前
3分钟前
Mine完成签到,获得积分10
3分钟前
3分钟前
5分钟前
6分钟前
jyy应助FUNG采纳,获得10
6分钟前
6分钟前
慧喆完成签到 ,获得积分10
6分钟前
刘佳佳完成签到 ,获得积分10
6分钟前
YANGLan完成签到,获得积分10
6分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
迷茫的一代完成签到,获得积分10
8分钟前
FUNG发布了新的文献求助10
8分钟前
肆肆完成签到,获得积分10
8分钟前
Tei完成签到,获得积分10
9分钟前
xaopng完成签到,获得积分10
9分钟前
小西完成签到 ,获得积分10
9分钟前
Anan完成签到,获得积分10
11分钟前
木南大宝完成签到 ,获得积分10
11分钟前
乐乐应助Anan采纳,获得10
12分钟前
12分钟前
Anan发布了新的文献求助10
12分钟前
12分钟前
去去去去发布了新的文献求助10
12分钟前
科研通AI2S应助去去去去采纳,获得10
12分钟前
紫熊完成签到,获得积分10
14分钟前
joe完成签到 ,获得积分0
14分钟前
oracl完成签到 ,获得积分10
15分钟前
lilili发布了新的文献求助10
16分钟前
所所应助HudaBala采纳,获得10
16分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335