已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Unsupervised Momentum Contrastive Learning Based Transformer Network for Hyperspectral Target Detection

高光谱成像 计算机科学 变压器 人工智能 模式识别(心理学) 物理 量子力学 电压
作者
Yulei Wang,Xi Chen,Enyu Zhao,Chunhui Zhao,Meiping Song,Chunyan Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 9053-9068 被引量:36
标识
DOI:10.1109/jstars.2024.3387985
摘要

Hyperspectral target detection plays a pivotal role in various civil and military applications. Although recent advancements in deep learning have largely embraced supervised learning approaches, they often hindered by the limited availability of labeled data. Unsupervised learning, therefore, emerges as a promising alternative, yet its potential has not been fully realized in current methodologies. This article proposes an innovative unsupervised learning framework employing a momentum contrastive learning-based transformer network specifically tailored for hyperspectral target detection. The proposed approach innovatively combines transformer-based encoder and momentum encoder networks to enhance feature extraction capabilities, adeptly capturing both local spectral details and long-range spectral dependencies through the novel overlapping spectral patch embedding and a cross-token feedforward layer. This dual-encoder design significantly improves the model's ability to discern relevant spectral features amidst complex backgrounds. Through unsupervised momentum contrastive learning, a dynamically updated queue of negative sample features is utilized so that the model can demonstrate superior spectral discriminability. This is further bolstered by a unique background suppression mechanism leveraging nonlinear transformations of cosine similarity detection results, with two nonlinearly pull-up operations, significantly enhancing target detection sensitivity, where the nonlinearly operations are the exponential function with its normalization and the power function with its normalization, respectively. Comparative analysis against seven state-of-the-art hyperspectral target detection methods across four real hyperspectral images demonstrates the effectiveness of the proposed method for hyperspectral target detection, with an increase in detection accuracy and a competitive computational efficiency. An extensive ablation study further validates the critical components of the proposed framework, confirming its comprehensive capability and applicability in hyperspectral target detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RRR232完成签到 ,获得积分10
刚刚
1秒前
大方听白完成签到 ,获得积分10
1秒前
123完成签到 ,获得积分10
3秒前
聪聪great发布了新的文献求助10
4秒前
01259完成签到 ,获得积分10
5秒前
嘁嘁嘁发布了新的文献求助10
5秒前
6秒前
azon完成签到 ,获得积分10
7秒前
韦老虎完成签到,获得积分20
8秒前
聪聪great完成签到,获得积分20
8秒前
9秒前
徐zhipei完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
Criminology34应助HH采纳,获得10
11秒前
神奇五子棋完成签到 ,获得积分10
11秒前
11秒前
敏感的博超完成签到 ,获得积分10
12秒前
Owen应助清秀小霸王采纳,获得10
12秒前
Left发布了新的文献求助10
12秒前
聪明萤完成签到 ,获得积分10
13秒前
实物图发布了新的文献求助10
13秒前
14秒前
comeongong发布了新的文献求助10
14秒前
Rainsky完成签到 ,获得积分10
14秒前
风中黎昕完成签到 ,获得积分10
15秒前
仙仙仙仙啊完成签到,获得积分10
16秒前
16秒前
xiaomaxia发布了新的文献求助10
16秒前
leemonster发布了新的文献求助10
16秒前
惊鸿H完成签到 ,获得积分10
17秒前
赵允发布了新的文献求助10
17秒前
小余同学完成签到 ,获得积分10
18秒前
xiaozhang发布了新的文献求助10
20秒前
hkf发布了新的文献求助10
20秒前
立夏完成签到,获得积分20
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504