已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Unsupervised Momentum Contrastive Learning Based Transformer Network for Hyperspectral Target Detection

高光谱成像 计算机科学 变压器 人工智能 模式识别(心理学) 物理 量子力学 电压
作者
Yulei Wang,Xi Chen,Enyu Zhao,Chunhui Zhao,Meiping Song,Chunyan Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 9053-9068 被引量:36
标识
DOI:10.1109/jstars.2024.3387985
摘要

Hyperspectral target detection plays a pivotal role in various civil and military applications. Although recent advancements in deep learning have largely embraced supervised learning approaches, they often hindered by the limited availability of labeled data. Unsupervised learning, therefore, emerges as a promising alternative, yet its potential has not been fully realized in current methodologies. This article proposes an innovative unsupervised learning framework employing a momentum contrastive learning-based transformer network specifically tailored for hyperspectral target detection. The proposed approach innovatively combines transformer-based encoder and momentum encoder networks to enhance feature extraction capabilities, adeptly capturing both local spectral details and long-range spectral dependencies through the novel overlapping spectral patch embedding and a cross-token feedforward layer. This dual-encoder design significantly improves the model's ability to discern relevant spectral features amidst complex backgrounds. Through unsupervised momentum contrastive learning, a dynamically updated queue of negative sample features is utilized so that the model can demonstrate superior spectral discriminability. This is further bolstered by a unique background suppression mechanism leveraging nonlinear transformations of cosine similarity detection results, with two nonlinearly pull-up operations, significantly enhancing target detection sensitivity, where the nonlinearly operations are the exponential function with its normalization and the power function with its normalization, respectively. Comparative analysis against seven state-of-the-art hyperspectral target detection methods across four real hyperspectral images demonstrates the effectiveness of the proposed method for hyperspectral target detection, with an increase in detection accuracy and a competitive computational efficiency. An extensive ablation study further validates the critical components of the proposed framework, confirming its comprehensive capability and applicability in hyperspectral target detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦蝴蝶发布了新的文献求助10
刚刚
刚刚
Jepsen完成签到 ,获得积分10
刚刚
帅气安柏完成签到,获得积分10
1秒前
欣欣完成签到,获得积分10
1秒前
慕青应助江sir采纳,获得10
2秒前
大模型应助苏苏诺诺2023采纳,获得20
2秒前
2秒前
无问完成签到,获得积分10
3秒前
honey发布了新的文献求助10
5秒前
盼夏发布了新的文献求助10
5秒前
呜呜完成签到 ,获得积分10
6秒前
虚拟的凌旋完成签到 ,获得积分10
7秒前
KalBlaze完成签到,获得积分10
8秒前
所所应助何怡采纳,获得10
8秒前
Airlie完成签到,获得积分10
8秒前
梦蝴蝶完成签到,获得积分10
10秒前
靓丽藏花完成签到 ,获得积分10
10秒前
汉堡包应助殷一丹采纳,获得10
10秒前
aim完成签到 ,获得积分10
10秒前
10秒前
12秒前
张嘉雯完成签到 ,获得积分10
13秒前
honey完成签到,获得积分20
13秒前
黑巧的融化完成签到 ,获得积分10
14秒前
找文献完成签到 ,获得积分10
14秒前
XDF完成签到 ,获得积分10
14秒前
青衫完成签到 ,获得积分10
14秒前
犹豫梦菡完成签到 ,获得积分10
15秒前
酷炫的铸海完成签到,获得积分10
15秒前
Clay完成签到 ,获得积分10
15秒前
15秒前
17秒前
侠客完成签到 ,获得积分10
18秒前
徐徐图之完成签到 ,获得积分10
18秒前
吴未完成签到,获得积分10
19秒前
JamesPei应助dengy采纳,获得10
19秒前
含蓄的静竹完成签到 ,获得积分10
21秒前
Fiona完成签到 ,获得积分10
22秒前
崔梦楠完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356070
求助须知:如何正确求助?哪些是违规求助? 4487906
关于积分的说明 13971244
捐赠科研通 4388674
什么是DOI,文献DOI怎么找? 2411197
邀请新用户注册赠送积分活动 1403730
关于科研通互助平台的介绍 1377447