An Unsupervised Momentum Contrastive Learning Based Transformer Network for Hyperspectral Target Detection

高光谱成像 计算机科学 变压器 人工智能 模式识别(心理学) 物理 量子力学 电压
作者
Yulei Wang,Xi Chen,Enyu Zhao,Chunhui Zhao,Meiping Song,Chunyan Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 9053-9068 被引量:36
标识
DOI:10.1109/jstars.2024.3387985
摘要

Hyperspectral target detection plays a pivotal role in various civil and military applications. Although recent advancements in deep learning have largely embraced supervised learning approaches, they often hindered by the limited availability of labeled data. Unsupervised learning, therefore, emerges as a promising alternative, yet its potential has not been fully realized in current methodologies. This article proposes an innovative unsupervised learning framework employing a momentum contrastive learning-based transformer network specifically tailored for hyperspectral target detection. The proposed approach innovatively combines transformer-based encoder and momentum encoder networks to enhance feature extraction capabilities, adeptly capturing both local spectral details and long-range spectral dependencies through the novel overlapping spectral patch embedding and a cross-token feedforward layer. This dual-encoder design significantly improves the model's ability to discern relevant spectral features amidst complex backgrounds. Through unsupervised momentum contrastive learning, a dynamically updated queue of negative sample features is utilized so that the model can demonstrate superior spectral discriminability. This is further bolstered by a unique background suppression mechanism leveraging nonlinear transformations of cosine similarity detection results, with two nonlinearly pull-up operations, significantly enhancing target detection sensitivity, where the nonlinearly operations are the exponential function with its normalization and the power function with its normalization, respectively. Comparative analysis against seven state-of-the-art hyperspectral target detection methods across four real hyperspectral images demonstrates the effectiveness of the proposed method for hyperspectral target detection, with an increase in detection accuracy and a competitive computational efficiency. An extensive ablation study further validates the critical components of the proposed framework, confirming its comprehensive capability and applicability in hyperspectral target detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助一口啵啵采纳,获得10
1秒前
摘星012完成签到 ,获得积分10
1秒前
123发布了新的文献求助20
2秒前
张大宝完成签到 ,获得积分10
3秒前
烟花应助pingyuxuan采纳,获得10
4秒前
4秒前
记忆里的阳光完成签到,获得积分10
6秒前
6秒前
7秒前
Orange应助啦啦采纳,获得10
8秒前
Bystander完成签到 ,获得积分10
8秒前
8秒前
9秒前
III完成签到,获得积分10
10秒前
哦豁拐咯发布了新的文献求助10
10秒前
10秒前
11秒前
陈欣羽发布了新的文献求助10
11秒前
小二郎应助欢喜的非笑采纳,获得10
12秒前
12秒前
13秒前
ZZ发布了新的文献求助10
13秒前
16秒前
16秒前
16秒前
Chouvikin完成签到,获得积分10
17秒前
bobo完成签到 ,获得积分10
17秒前
清风朗月完成签到,获得积分10
18秒前
18秒前
wbx发布了新的文献求助10
19秒前
一口啵啵发布了新的文献求助10
19秒前
joy完成签到,获得积分10
19秒前
20秒前
春山发布了新的文献求助10
20秒前
20秒前
沉默小天鹅完成签到,获得积分10
21秒前
打打应助yue采纳,获得10
21秒前
21秒前
書生发布了新的文献求助10
21秒前
Zac发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034