清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Unsupervised Momentum Contrastive Learning Based Transformer Network for Hyperspectral Target Detection

高光谱成像 计算机科学 变压器 人工智能 模式识别(心理学) 物理 量子力学 电压
作者
Yulei Wang,Xi Chen,Enyu Zhao,Chunhui Zhao,Meiping Song,Chunyan Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 9053-9068 被引量:6
标识
DOI:10.1109/jstars.2024.3387985
摘要

Hyperspectral target detection plays a pivotal role in various civil and military applications. Although recent advancements in deep learning have largely embraced supervised learning approaches, they often hindered by the limited availability of labeled data. Unsupervised learning, therefore, emerges as a promising alternative, yet its potential has not been fully realized in current methodologies. This paper proposes an innovative unsupervised learning framework employing a momentum contrastive learning-based transformer network specifically tailored for hyperspectral target detection. The proposed approach innovatively combines transformer-based encoder and momentum encoder networks to enhance feature extraction capabilities, adeptly capturing both local spectral details and long-range spectral dependencies through the novel overlapping spectral patch embedding and a cross-token feedforward layer. This dual-encoder design significantly improves the model's ability to discern relevant spectral features amidst complex backgrounds. Through unsupervised momentum contrastive learning, a dynamically updated queue of negative sample features is utilized so that the model can demonstrate superior spectral discriminability. This is further bolstered by a unique background suppression mechanism leveraging nonlinear transformations of cosine similarity detection results, with two nonlinearly pull-up operations, significantly enhancing target detection sensitivity, where the nonlinearly operations are the exponential function with its normalization and the power function with its normalization, respectively. Comparative analysis against seven state-of-the-art hyperspectral target detection methods across four real hyperspectral images demonstrates the effectiveness of the proposed method for hyperspectral target detection, with an increase in detection accuracy and a competitive computational efficiency. An extensive ablation study further validates the critical components of the proposed framework, confirming its comprehensive capability and applicability in hyperspectral target detection scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
量子星尘发布了新的文献求助10
28秒前
Qian完成签到 ,获得积分10
30秒前
白天亮完成签到,获得积分10
49秒前
宇文非笑完成签到 ,获得积分10
1分钟前
1分钟前
游鱼完成签到,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
1分钟前
什么也难不倒我完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
YY给YY的求助进行了留言
1分钟前
缓慢的忆枫完成签到,获得积分20
1分钟前
zpc猪猪完成签到,获得积分10
1分钟前
2分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
GIA完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
陶世立完成签到 ,获得积分10
4分钟前
轻松的甜瓜完成签到,获得积分10
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
nojego完成签到,获得积分10
5分钟前
光合作用完成签到,获得积分10
5分钟前
6分钟前
6分钟前
YY发布了新的文献求助30
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
沉沉完成签到 ,获得积分0
7分钟前
乾坤侠客LW完成签到,获得积分10
8分钟前
Jeongin完成签到,获得积分10
8分钟前
cadcae完成签到,获得积分10
9分钟前
gentleman完成签到,获得积分10
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015226
求助须知:如何正确求助?哪些是违规求助? 3555175
关于积分的说明 11317925
捐赠科研通 3288594
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983