Accurate multiclassification and segmentation of gastric cancer based on a hybrid cascaded deep learning model with a vision transformer from endoscopic images

人工智能 分割 深度学习 计算机科学 假阳性悖论 胃癌 模式识别(心理学) 癌症 图像分割 二元分类 医学 支持向量机 内科学
作者
Ejaz Ul Haq,Yong Qin,Yuan Zhou,Jianjun Huang,Rizwan Ul Haq,Xuwen Qin
出处
期刊:Information Sciences [Elsevier]
卷期号:670: 120568-120568
标识
DOI:10.1016/j.ins.2024.120568
摘要

Compared with other forms of cancer, gastric cancer has high mortality and incidence rates, making it a major cause of death worldwide. Accurate diagnosis is crucial in the treatment of stomach cancer. Researchers have used deep learning techniques facilitated by developments in artificial intelligence to classify and segment endoscopic images of stomach cancer. Most recent research examining endoscopic images of stomach cancer has used a binary classification system, which is insufficient for practical use. False-positives and computational costs become problematic when segmentation is applied to all the images of healthy patients obtained throughout the evaluation. Hence, the expected level of performance has not been attained in the real-time multiclassification and segmentation of stomach cancer. In this study, we present a deep learning-based technique for multiclassification of endoscopic images by combining modified GoogLeNet and vision transformer (ViT) models and identifying invasive areas based on Faster R-CNN. The classification of endoscopic images into three categories, namely, normal, early gastric cancer, and advanced gastric cancer, is accomplished by using a hybrid approach including modified GoogLeNet and vision transformer (ViT) models. Gastric cancer regions are then identified and segmented in the endoscopic images using the Faster R-CNN method. The Faster R-CNN algorithm is used with an endoscopic image as input, resulting in the generation of a bounding box and label image that accurately represents the gastric cancerous area. The proposed model achieved an accuracy, sensitivity and F1-score of 97.4%, 97.5% and 95.9%, respectively, for the classification of noncancerous, early gastric cancer and advanced gastric cancer. Furthermore, the performance of the segmentation method was also validated based on evaluation metrics and achieved 96.7%, 96.6% and 95.5% accuracy, sensitivity and F1-score, respectively, for the segmentation of noncancerous, early gastric cancer and advanced gastric cancer tissues. In conclusion, the method proposed in this study demonstrates enhanced global classification and detection performance compared to existing state-of-the-art algorithms. This finding underscores the significant potential of the proposed method in the domain of gastric endoscopic image classification and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sandao完成签到,获得积分10
刚刚
研究牲发布了新的文献求助10
3秒前
yyq617569158发布了新的文献求助10
3秒前
情怀应助迃幵采纳,获得10
3秒前
oldyang完成签到,获得积分10
4秒前
留猪完成签到,获得积分10
5秒前
123456发布了新的文献求助10
5秒前
7秒前
细腻的雅山完成签到 ,获得积分10
9秒前
万能图书馆应助毛毛虫采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
nnnick完成签到,获得积分0
12秒前
13秒前
Cola完成签到,获得积分10
13秒前
浮名半生发布了新的文献求助10
13秒前
研究牲完成签到,获得积分10
13秒前
小孙发布了新的文献求助10
14秒前
请记住这个女人叫小美完成签到 ,获得积分20
15秒前
15秒前
思源应助VERY采纳,获得10
17秒前
18秒前
认真科研发布了新的文献求助10
18秒前
Savitr发布了新的文献求助10
18秒前
CipherSage应助FJH采纳,获得10
18秒前
镭射眼完成签到,获得积分10
19秒前
六碗鱼发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
善学以致用应助Hayat采纳,获得20
22秒前
22秒前
将离发布了新的文献求助10
22秒前
22秒前
LARS完成签到,获得积分10
23秒前
24秒前
shadow完成签到 ,获得积分10
24秒前
明理宛秋完成签到 ,获得积分10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943